

Reg. No. :

VI Semester B.Sc. Degree (CBCSS – Regular) Examination, May 2017 CORE COURSE IN PHYSICS (2014 Admn.)

6B13 PHY: Quantum Mechanics

Time: 3 Hours

Max. Marks: 40

SECTION - A

Answer all, very short answer type, each question carries 1 mark.

- 1. Photoelectric current is directly proportional to the
- 2. Write down the time dependent Schrodinger equation for a particle of mass m moving in a potential v(r, t).
- 3. The splitting of spectral lines by magnetic field is
- 4. For the Harmonic oscillator the levels are

 $(1 \times 4 = 4)$

SECTION - B

Answer any seven, short answer type, each question carries two marks.

- Explain the postulates of Bohr with regard to hydrogen atom.
- 6. What is Compton effect?
- 7. Explain de Broglie's hypothesis.
- 8. State and explain uncertainty principle.
- 9. What are eigen functions and eigen values of an operator?
- 10. Distinguish between coordinate and momentum representation.

- 11. What does tunnelling mean?
- 12. What is zero point energy of a harmonic oscillator?
- 13. Sketch graphs of wave function ψ and of $|\psi|^2$ for the n = 3 and n = 4 states of a particle trapped in a potential well of infinite depth.
- State Pauli-exclusion principle.

 $(2 \times 7 = 14)$

SECTION - C

Answer any four short essay/problem, each question carries three marks.

- 15. X-rays with $\lambda = 1.0$ A° are scattered from a metal block. The scattered radiation are viewed at 90° to the incident direction. Evaluate the Compton shift.
- An electron has a speed of 500 m/s with an accuracy of 0.004%. Calculate the certainty with which we can locate the position of the electron.
- 17. Explain the significance of Ehrenfest's theorem.
- 18. Explain how barrier tunnelling accounts for α -decay by certain nuclei.
- Find the expectation value <x> of the position of a particle trapped in a box L wide.
- 20. A sample of a certain element is placed in a 0.300 T magnetic field and suitably excited. How far apart are the Zeeman components of the 450 nm spectral line of this element? (3x4=12)

SECTION - D

Answer any two long essay type, each question carries five marks.

- Give an account of Einstein's explanation of photoelectric effect on the basis of quantum theory.
- 22. Explain quantum mechanical tunneling.
- 23. State and explain the postulates of quantum mechanics.
- 24. Discuss Zeeman effect.

 $(5 \times 2 = 10)$