14. An X-ray beam of wavelength 0.97 A is obtained in the third order after reflection

M 7158

Reg. N	lo. :	rust right to the	d sifesage la mai	and a syceol of pallace		
Name	:			or lengthogold at the		
		CORE CO	ree (CCSS - I on, November URSE IN PHY : Physics of S	SICS		
Time: 3 Hours			п тнач Мах. V		ghtage: 30	
			PART – A			
, inswe	er all questions.	. Each bunch ca	rries a weightag	e of 1:		
1. i)	Sodium has body centred packing. If the distance between two nearest atom					
	is 3.7 Å, then lattice parameter is					
	a) 2.3 Å	b) 3.9 Å	c) 4.3 Å	d) 4.8 Å		
ii)	A crystal that is transparent to light is due to					
	a) Ionic bondi	Ionic bonding		b) Metallic bonding		
c) Covalent bonding		onding	d) Vander Waal's bonding			
iii)	The co-ordina	ation number for	simple cubic cry	stal is		
	a) 4	b) 6	c) 8	d) 12		
iv)	The number of atom per unit cell of a bcc crystal is					
	a) 1	b) 2	c) 4	d) 8	8	
2. i)	Bragg's law is	age of 2				
	a) $d \sin \theta = 2$	2λ white	b) 2d cos) = λ		
	c) 2d sin θ =	nλ	d) d tan θ	= 2 λ		
ii)	When temperature of a metal increases, then its mean free path					
	a) decreases		b) increas	es		
	c) constant		d) first incl	d) first increase and then decrease		

3-

M 7158

- iii) According to Debye's theory of specific heat at high temperature specific heat is proportional to
 - a) T
- b) T²
- c) T³
- d) Independent of T

- iv) BCS theory relating to
 - a) Interference

b) Superconductivity

 $(2 \times 1 = 2)$

c) Specific heat

d) None of the above

PART-B

Answer any six. Each question carries a weightage of 1.

- 3. List the different type of bond with suitable example.
- 4. What is Miller indices ?
- 5. What do you mean by packing fraction?
- 6. Give the principle of rotating crystal method.
- 7. List any two drawbacks of classical of theory of free electron model.
- 8. What are phonons? Give one property.
- 9. What is Meissner effect?
- Define Josephson's effect.

 $(6 \times 1 = 6)$

0

PART-C

Answer any nine questions. Each carries a weightage of 2:

- Distinguish between Ionic bond and covalent bond with example.
- 12. The Bragg angle corresponding to the first order reflection from (1,1,1) planes in a crystal is 30° when X-rays of wavelength 1.75 Å are used. calculate the interatomic spacing.
- 13. Derive Bragg's law and give its importance.

- 14. An X-ray beam of wavelength 0.97 Å is obtained in the third order after reflection at 60° from the crystal plane. Another beam is obtained in the first code after reflection at 30°. Find the wavelength of second X-ray beam.
- Define coordination number and lattice constant of a crystal. Explain how lattice constant in alkali halide crystals was calculated.
- 16. Calculate the mean free time in copper at 20°C, assuming one free electron/copper atom. Assuming that the average speed of the free electrons is about 10^6 m/s, estimate the mean free path. $n = 8.48 \times 10^{28}$ electron/m³ $p = 1.673 \times 10^{-8}$ Ω m.
- 17. Discuss Einstein's specific heat formula and explain its limitations.
- 18. What do you understand by sp. heat of solids? How the concept of phonons be explained?
- 19. Explain with suitable example Type I and Type II superconductors.
- 20. Distinguish between DC Josephson effect and ac Josephson effect.
- 21. Discuss the phenomenon of thermal conductivity due to electron.
- 22. Obtain an expression for Debye's frequency.

 $(9 \times 2 = 18)$

PART - D

Answer any one. Each question carries 4 weightage.

- 23. Discuss Laue's principle of X-ray diffraction and obtain the diffraction condition for a simple cubic lattice. What is Laue spots?
- 24. Briefly explain the salient features of BCS theory. Describe one experimental evidence for the existence of energy gap. (1x4=4)