13. Derive Its expression for local costsy of the stack on in Hydrogen start. 16. Calculate the binding energy of an alpha particle. Given mass of He, = 4.00387u 17. What are the statement one and unitations of the liquid drop model of the nucleus ? 20. West us the four fundamental interactions ? Discuss .. 22. What do you mean by electron soln? Explain the stanificance of Stom-Surfacit.

Reg. No. :	
Name :	The second to
Examinati Core C 5B10 PHY : ATOMIC, N	ree (CCSS-Reg./Supple./Improve.) ion, November 2015 course in Physics UCLEAR AND PARTICLE PHYSICS Earlier Admissions)
Time: 3 Hours	Max. Weightage: 30
	SECTION - A
Choose the correct answer. Each	bunch carries of weightage of 1.
	scattering experiment no. of aplha particles per reen at a scattering angle of θ is proportional
a) √KE	b) KE
c) KE ²	d) KE ³
ii) $\frac{1}{1} = R \left[\frac{1}{1} - \frac{1}{1} \right] n = 5, 6$	5, 7 this corresponds to
a) Lyman series	b) Paschen series
c) Brackett series	d) Pfund series
iii) The number of electrons in	
a) n	h) n ²
c) 2n	d) 2n ²
iv) In periodic table, across left to	right in any period ionization energy
a) Decreases	b) Increases
c) Remains same	d) None of these (W = 1)
	P.T.O.

M 9935

- 2. i) $P^+ + e^- \rightarrow n^\circ$ represents
 - a) Alpha decay

- b) Beta decay
- c) Positron emission
- d) Electron capture
- ii) The end product of Neptunium series is _____
 - a) 206
- b) ₈₃Bi²⁰⁹
- c) 82 Pb 208
- d) ₈₂Pb²⁰⁷
- iii) Which one of the following is not a Lepton
 - a) Electron
- b) Proton
- c) Muon
- d) Tau neutrino
- iv) Strangeness quantum no. of strange quark is
 - a) 1
- b) -2
- c) 0
- d) +1
- (W = 1)

SECTION - B

Answer any six. Each carries a weightage of 1.

- 3. What do you mean by radioactive equilibrium?
- 4. Give the expression for reaction rate.
- 5. λ particle consists of a u quark, a d quark and s quark. What is its charge?
- 6. Why is the ground state of hydrogen atom not split into two sublevels by spin-orbit coupling?
- 7. Define binding energy. What is BE/nucleon?
- 8. What happened when an electron is captured by a nucleus?
- 9. What is ITER?
- 10. Write a note on pairing energy.

(6×1=6 W)

SECTION-C

Answer any nine. Each question carries a weightage of 2.

- 11. Briefly explain the quantum numbers associated with an electron.
- 12. Explain Meson Theory of Nuclear Forces.

- 13. Derive the expression for total energy of an electron in Hydrogen atom.
- 14. How the nuclear mass effects the wave length of spectral lines?
- 15. In each of the following pairs of atoms, which would you expect to be larger in size? Why? Li and F; Li and Na; F and CI; Na and Si.
- 16. Calculate the binding energy of an alpha particle. Given mass of $He_4 = 4.00387u$ $M_n = 1.00866u$, $M_p = 1.00728u$, and u = 931 MeV.
- 17. What are the assumptions and limitations of the liquid drop model of the nucleus?
- 18. The atomic ratio between Uranium isotopes 238 U and 234 U in a mineral sample is found to be 1.8×10^4 . The half life of 234 U is 2.5×10^5 yrs. Find the half life of 238 U.
- 19. Describe nuclear fission on the basis of liquid drop model.
- 20. What are the four fundamental interactions? Discuss.
- 21. Which of the following reactions can occur? State the conservation principles volated by others.
 - a) $P+P \rightarrow n+P+\pi^+$

- b) $P+P \rightarrow P + \lambda^{\circ} + \epsilon^{+}$
- c) $e^+ + e^+ \rightarrow \mu^+ + \pi^-$
- d) $P+P \rightarrow P+\pi^++K^\circ+\lambda^\circ$
- 22. What do you mean by electron spin ? Explain the significance of Stern-Gerlach Experiment. (9x2=18 W)

SECTION - D

Answer any one. Each question carries a weightage of 4.

- 23. What are magic numbers? Give an account of the shell model of the binding energy and indicate how the model explains the existence of magic numbers.
- 24. Derive the exponential law of radioactive disintegration. Hence deduce the expression for half and mean life. Show mean life is 1.44 times the half life.

 $(1 \times 4 = 4 \text{ W})$