

Reg. No. :

II Semester B.Sc. Degree (CCSS-Reg./Supple./Improv.) Examination, May 2016 COMPLEMENTARY COURSE IN PHYSICS 2C02 PHY: Electricity, Magnetism and Thermal Physics (2014 Admn. Onwards)

Time: 3 Hours Max. Marks: 32

Instruction: Write answers in English only.

SECTION-A

SECTI	ON-A	
Answer all. Very short answer type. Each		
1. The mathematical expression for first la		
2. As length of the wire increases its resis	tivity	signaso isos
3. During isothermal process	remains constant.	
4. Time constant of L-R circuit is	ression for work dono dune	
5. Carey-Foster bridge is worked on	principle.	(5×1=5)

SECTION-B

Answer any four. Short answer type. Each question carries two marks.

- Distinguish between reversible and irreversible process. Give one example for each.
- 7. State Biot-Savart Law.
- 8. What do you mean by thermal equilibrium and state zeroth law of thermodynamics.
- 9. How can we calibrate an ammeter using potentiometer?
- State second law of thermodynamics.
- 11. Define Isochoric and Isobaric process.

 $(4 \times 2 = 8)$

P.T.O.

SECTION-C

Answer any three. Short essay/problem type. Each question carries three marks.

- 12. Compare Ballistic galvanometer and Dead beat galvanometer.
- 13. One mole of a gas at 27° C expands adiabatically until its volume is doubled. Calculate the work done. ($\gamma = 1.4$).
- 14. Derive the relation between adiabatic elasticity and isothermal elasticity.
- 15. Derive the expression for current carrying conductor in a magnetic field.
- 16. Discuss the critically damped condition in LCR circuit.

(3×3=9)

SECTION-D

Answer any two. Long essay type. Each question carries five marks.

- 17. Give the statement of Carnot's theorem and prove them.
- Derive the expression for magnetic induction at a point on the axis of a circular coil carrying current.
- 19. Discuss growth and decay of charge in C-R circuit.
- 20. Derive expression for work done during isothermal and adiabatic process. (2x5=10)

How can we calibrate an armeter using potentiontelor