		The second second	
		COLLEGE	K18U 05
Reg. No. :			
Name :			
II Semest		gree (CBCSS-Reg./Su	ipple./lmp.)
		nation, May 2018	
		OURSE IN PHYSICS	
		Y : Electronics – I Admn. Onwards)	
Time: 3 Hours			Max. Marks:
Instruction : Write	answers in En	glish only .	
		SECTION - A	
(Answer all-Very sho	ort answer type	-Each question carries o	ne mark.)
1. The point of inter-	section of dc ar	nd ac load line represents	- water
2. AJFETisa	driv	ven device.	
3. The 8 bit binary e	quivalent of (18	87) ₁₀ is	
4. NAND gate is known	own as	gate.	(4×1
	8	SECTION - B	
(Answer any seven-	Short answer t	ype- Each question carrie	es two marks.)
5. Common collect	or circuit is kno	wn as emitter follower. C	omment on it.
6. What is stabiliza	tion of operatin	ng point? What is its need	1?
7. Define α . Show	that α is alwa	ys less than unity.	
8. Why JFET is kno	own as unipola	r transistor ?	

9. List any four advantages of JFET.

K18U 0510 -2-

- 10. Define the following terms
 - i) Shorted gate drain current
 - ii) Pinch off voltage.
- 11. What are the three basic logic gates?
- 12. What is the Boolean equation for the output of figure below? What is the output if one input is high?

- 13. Convert the decimal number 46 into binary equivalent.
- 14. Explain the signed magnitude scheme with an example. (7×2=14)

SECTION-C

(Answer any four-short essay/problem type-Each question carries three marks.)

- 15. The collector leakage current in a transistor is $250\,\mu$ A in CE arrangement. If the transistor is connected in CB arrangement, what will be the leakage current.
- 16. In a Common Base connection α =0.95. The voltage drop across $2k\Omega$ resistance which is connected in the collector is 2V. Find the base current.
 - 17. What are the JFET parameters? Obtain a relation between them.
 - 18. In an n-channel JFET biased by potential divider method, it is desired to set the operating point at I_D=2.5 mA and V_{DS} = +8 V. If V_{DD}=30V, R₁ = 1M Ω and R₂ = 500 K Ω . Find the values of R_s. The parameters of JFET are IDSS = 10MA and VGS (off) = -5V.
 - 19. State and prove de-Morgan's theorem.
 - 20. Subtract 7 from 18 by two's complement method. (4×3=12)

SECTION-D

-3-

(Answer any two-Long essay type-Each question carries five marks.)

- 21. Describe the potential divider method in detail. Derive an expression for stability factor.
- 22. Explain the construction and working of a JFET.
- 23. Explain combinational logic circuits using NAND and NOR gates.
- 24. What are binary coded decimals? How two BCD numbers are arithmetically operated? (2x5=10)