Re	g. No. :	K19U2279				
13	me:					
	V Semester B.Sc. Degree (CBCSS- Reg./Sup./Imp November-2019	.) Examination,				
	(2014 Admn. Onwards)					
	Core Course in Statistics					
	5B 09 STA: Statistical Quality Control and Operation	ons Research				
	(Use of calculators and Statistical tables are pe	ermitted)				
Tir	ne : 3 Hours	Max. Marks: 48				
	PART - A (Short answer)					
	Answer all the 6 questions.	(6×1=6)				
1.	What is the difference between feasible solution and basic feasible solution?					
2.	What are the slack and surplus variables?					
3.	What do you mean by quality of a product?					
4.	Define Consumer's risk.					
5.	What are rational subgroups?					
6.	Define AOQL.					
	PART - B (Short essay)					
	Answer any 7 questions.	(7×2=14)				
7.	Define					
	i) Optimum solution and					
	ii) Degenerate basic feasible solution					

P.T.O.

K19U2279

(2)

- Write the mathematical form of a primal problem and its corresponding dual problem.
- 9. Distinguish between transportation problem and assignment problem.
- 10. Explain North West Corner rule of solving a transportation problem.
- 11. Write a short note on modified control chart.
- 12. Distinguish between process control and product control.
- 13. Describe 3σ control limits.
- 14. Explain double sampling plan.
- 15. Define
 - i) LTPD and
 - ii) AQL

PART-C(Essay)

PART - A (Short answer)

Answer any 4 questions.

 $(4 \times 4 = 16)$

P.T.O.

- 16. Explain the simplex method of solving an LPP.
- 17. Solve graphically the following LPP and comment on the result.

Maximize
$$z = 3x_1 + 2x_2$$

Subject to
$$3x_1+2x_2 \le 120$$
,

$$x_1 + x_2 \le 50$$

$$x \le 30$$
,

$$x_1, x_2 \geq 0$$
.

- 18. Explain the Hungarian method of solving an assignment problem.
- 19. Distinguish between defect and defective. How do you calculate control limits for a C chart?

(3)

K19U2279

- 20. Write a short notes on:
 - np chart
 - ii) AOQ
- 21. Explain the method of constructing R chart.

PART - D (Long essay)

Answer any 2 questions.

 $(2 \times 6 = 12)$

22. Using simplex method, solve the following LPP.

Maximize
$$z = 15x_1 + 6x_2 + 9x_3 + 2x_4$$

Subject to the

constraints
$$2x_1+x_2+5x_3+6x_4 \le 20$$
,

$$3x_1+x_2+3x_3+25x_4 \le 24$$
,

$$7x_1+x_4 \leq 70$$
,

$$x_1, x_2, x_3, x_4 \ge 0$$
.

Find the optimum basic feasible solution for the following transportation problem.

Source/Destination	D1	D2	D3	Supply
S1	2	7	4	5
S2	3	3	1	8
S3	5	4	7	7
S4	1	6	2	14
Demand	7	9	18	34

- 24. Explain the construction and interpretation of control chart for fraction defective.
- 25. Describe single sampling plan. Find the expression for OC curve in single sampling plan.