

Reg. No.	·
Name :	

K20U 1852

III Semester B.Sc. Degree CBCSS (OBE) – Regular Examination, November 2020 (2019 Admission Only)

Complementary Elective Course in Statistics 3C03STA: Probability Distributions

Time: 3 Hours Max. Marks: 40

Instruction: Use of calculators and statistical tables are permitted.

PART – A

(Short - Answer)

Answer all 6 questions.

 $(6 \times 1 = 6)$

- If X is a random variable, show that E(X²) ≥ [E(X)]².
- State the addition theorem on expectation.
- The mean of a binomial distribution is 4. If n = 6, find P (X ≥ 1).
- If X and Y are independent Poisson random variables with mean 1, find P(X + Y = 2).
- 5. Find the mean of rectangular distribution over the interval [-a, a].
- 6. Define beta distribution of I kind.

PART - B

(Short Essay)

Answer any 6 questions.

 $(6 \times 2 = 12)$

- Define raw moments and central moments. State the relation between them.
- If X is a random variable for which E(X) = 10 and Var(X) = 25. Find the value
 of a and b such that the random variable aX b has mean 0 and variance 1.
- 9. Find the mean and variance of the discrete uniform random variable, which takes values 1,2,..,n.
- In eight throws of a die, 5 or 6 are considered to be success. Find the expected number of successes and the standard deviation.
- 11. The time required to repair a machine is exponentially distributed with mean 2 hours. What is the probability that the repair time exceeds 2 hours?
- Write down the MGF of gamma distribution with one parameter and hence find its mean.

K20U 1852

- Define the terms
 - i) sampling distribution
 - ii) standard error.
- 14. Define F statistic. Write down the PDF of F distribution.

PART - C

(Essay)

Answer any 4 questions.

 $(4 \times 3 = 12)$

- 15. Two random variables X and Y have the joint probability density function f(x, y) = 2 x y; $0 \le x \le 1$, $0 \le y \le 1$ and 0 otherwise. Find the covariance between X and Y.
- 16. Establish the lack of memory property of geometric distribution.
- Obtain the MGF of Poisson distribution and hence find its mean and variance.
- 18. Let $X_1, X_2, ..., X_n$ be n independent random variables following $N(\mu_i, \sigma_i)$, i = 1, 2, ..., n. Derive the distribution of $\sum_{i=1}^{n} X_i$.
- 19. If X is a random variable following beta distribution of II kind, then show that $Y = \frac{1}{1+X}$ follows beta distribution of I kind.
- 20. Explain the relationships between χ^2 , t and F distribution.

PART - D

(Long Essay)

Answer any 2 questions.

 $(2 \times 5 = 10)$

- 21. The joint PDF of (X,Y) is given by f(x,y) = 24xy; x > 0, y > 0, $x + y \le 1$ and y = 0 elsewhere. Find
 - i) E (Y|X) and
 - ii) E (X|Y).
- 22. Derive the Poisson distribution as a limiting case of a binomial distribution.
- 23. Explain the important properties of normal distribution.
- Derive the sampling distribution of the sample variance of a random sample from normal population.