KIBU UBIN

PART - D Long Essay)

2x5=10)

Derive the sampling distribution of Chi-square statistic.

and the maximum likelihood estimators of 9 when X is a random variable

 $0 = (x, 0) = (x, 0) = (1 - 0)^2$, x = 0, $y = (1 - 0)^2$, x = 0, y = 0.

The following are the numbers of a particular organism found in 100 samples of water from a pond. Test the hypothesis that these data are

			Ge	
×.				
44		257	Bas	
				Total

Reg. No.:....

K18U 0947

Name :	ASSET TO TO STATE OF THE PROPERTY OF THE PROPE
IV Semester B.Sc. Degree	(CBCSS-Reg./Sup./Imp.) Examination

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, May 2018
COMPLEMENTARY COURSE IN STATISTICS FOR MATHEMATICS/
COMPUTER SCIENCE CORE
4C04STA: Statistical Inference
(2014 Admn. Onwards)

Time: 3 Hours Max. Marks: 40

not nottuditelb larmon, gnimusa: PART - A as 4 × q : H tanlage 4 = q : pH jot

(Short Answer)

Answer all the 6 questions.

 $(6 \times 1 = 6)$

- 1. Define Student's distribution.
- 2. What do you mean by point estimation?
- 3. State the Fischer Neymann factorisation criterion for sufficiency.
- 4. Define null and alternative hypothesis. Give one example for each.
- 5. Define power of a test.
- 6. Write down the test statistic for testing independence of attributes clearly mentioning each term.

PART – B (Short Essay)

Answer any 6 questions.

(6×2=12

- 7. State and prove the reproductive property of Chi-square distribution.
- 8. Explain the interrelationship between t, F and Chi-square statistics.
- 9. If $X_1, X_2, ..., X_n$ are independent and identically distributed with mean μ and finite variance σ^2 , then show that \overline{X} is a consistent estimator of μ .

P.T.O.

- 10. Check the validity of the statement : If T is an unbiased estimator of θ , then T^2 is an unbiased estimator of θ^2 .
- 11. Let (20, 22, 21, 24, 21) be a random sample drawn N (μ , σ^2). Obtain a 95% confidence interval for σ^2 .
- 12. Distinguish between simple and composite hypothesis with illustrative examples.
- Describe the procedure of testing single population proportion.
- 14. The growth of tumours in nine rats provided the data with $\overline{x} = 4.3$, s = 1.2. Test for H_0 : $\mu = 4$ against H_1 : $\mu \neq 4$ at $\alpha = 0.10$, assuming normal distribution for these growths.

PART - C

(Essay)

Answer any 4 questions.

 $(4 \times 3 = 12)$

- 15. Derive the mean and variance of F distribution.
- 16. If $X_1, X_2, ..., X_n$ are a random sample of size n from the distribution with probability density function (p.d.f.) $f(x, \theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$, find the moment estimator of θ .
- 17. Derive the 95% confidence interval for σ^2 , when a random sample of size n is taken from N (μ , σ^2), where μ and σ^2 unknown.
- 18. If $x \ge 1$, is the critical region for testing $H_0: \theta = 2$ against $H_1: \theta = 1$ on the basis of a single observation from $f(x, \theta) = \theta e^{-\theta x}$, $0 < x < \infty$, $\theta > 0$, obtain the values of probability of Type I and Type II errors.
- 19. Describe the method of testing independence of attributes in a 2 × 2 contingency table.
- 20. What are the differences between usual t test and paired test? Explain.

PART – D
(Long Essay)

Answer any 2 questions.

 $(2 \times 5 = 10)$

- 21. Derive the sampling distribution of Chi-square statistic.
- 22. Find the maximum likelihood estimators of θ when X is a random variable with p.d.f.

i)
$$f(x, \theta) = 1, \theta - \frac{1}{2} < x < \theta + \frac{1}{2}$$
 ii) $f(x, \theta) = \theta(1 - \theta)^x, x = 0, 1, 2,...$

23. The following are the numbers of a particular organism found in 100 samples of water from a pond. Test the hypothesis that these data are taken from a Poisson distribution.

No. of organisms	Frequency	
0	15	
1	30	
2	25	
3	20	
4	5	
5	4	
6	1	
7	0	

24. Discuss the association between general abilities and mathematical abilities of school boys based on the following data:

Mathematical ability	Ge	Total		
	Good	Fair	Poor	
Good	44	22	4	70
Fair	265	257	178	700
Poor	41	91	98	230
Total	350	370	280	1000