Reg. No.:....

Name :

II Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Supplementary/ Improvement) Examination, April 2025 (2019 to 2023 Admissions) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

2C02 MAT-CH: Mathematics for Chemistry - II

Time: 3 Hours

Max. Marks: 40

UNIT-I

Short answer type. Answer any 4 questions. Each question carries 1 mark. (4×1=4)

- 1. Find the natural domain of the function $z = \sqrt{3x^2 + 5y^2}$.
- 2. Find the degree of the homogeneous function $f(x,y) = \frac{\sqrt{y} + \sqrt{x}}{v + x}$.
- Evaluate ∫cos⁵ xdx. 4. Define a line in polar co-ordinates.
- Define Similar Matrices.

UNIT - II

Short essay type. Answer any 7 questions. Each question carries 2 marks.

- 6. Check the continuity of the function $f(x,y) = \frac{x+y}{x-y}$.
- 7. If $u = \sin^{-1}\left(\frac{x^3 y^3}{x + y}\right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan \mu$. 8. Use the chain rule to find the derivative of w=xy with respect to θ along the path
- $x = \cos\theta$, $y = \sin\theta$. What is the derivatives value at $\theta = \frac{\pi}{2}$?

P.T.O.

Evaluate ∫ sin⁶ 3xdx.

K25U 1321

11. Evaluate $\int_{-2}^{2} (x^4 - 4x^2 + 6) dx$.

- 12. Find the average value of $z = f(x, y) = x\cos xy$ over the rectangle
- $R: 0 \le x \le \pi, \ 0 \le y \le 1.$ 13. State Cayley-Hamilton Theorem.
- 14. Find the eigen values of the matrix $A = \begin{bmatrix} 10 & 3 \\ 4 & 6 \end{bmatrix}$.
- 15. Give the matrix associated with the quadratic form $6x_{1}^{2}+17x_{2}^{2}+3x_{3}^{2}+2x_{1}x_{3}+14x_{2}x_{3}+20x_{1}x_{2}\,.$

UNIT - III Essay type. Answer any 4 questions. Each question carries 3 marks.

 $(4 \times 3 = 12)$

17. Evaluate $\int_{0}^{a} \frac{x^4 dx}{\sqrt{a^2 - x^2}}.$

16. Describe the graph of the function f(x, y) = 1 - x - y.

- 18. Find the value of $\int_{0}^{\pi/2} \cos^3 x \cos 2x \, dx$.
- 19. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 20. Find the polar equivalent of the curve whose Cartesian equation is $x^2 y^2 = 1$.

22. Prove the eigen values of a triangular matrix are the same as its diagonal

elements.

K25U 1321

UNIT - IV Long essay type. Answer any 2 questions. Each question carries 5 marks. $(2 \times 5 = 10)$

21. Find the eigen values and corresponding eigen vectors of A = 0 2 2.

-3-

24. Prove that
$$\int_{0}^{1} x^{3/2} (1-x)^{3/2} dx = \frac{3\pi}{128}$$
.
25. Evaluate $\iint_{0}^{1} \int_{0}^{\sqrt{3}} xyz \, dz \, dy \, dx$.

23. If $\mathbf{v} = (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{-1/2}$, prove that $\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{v}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{z}^2} = 0$.

26. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ find A^2 using Cayley Hamilton theorem and then find A^3 .