Reg. No. :

Second Semester B.Sc. Degree (CBCSS - OBE - Supplementary/ Improvement) Examination, April 2025 (2019 to 2023 Admissions) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

2C02 MAT - PH: Mathematics for Physics - II

Time: 3 Hours

Max. Marks: 40

(Short answer type)

UNIT-1

Answer any 4 questions. Each question carries 1 mark. 1. Find the natural domain of the function $z = \sqrt{1-x^2-y^2}$. $(4 \times 1 = 4)$

2. Find the degree of the homogeneous function $f(x,y) = \frac{\sqrt{y} + \sqrt{x}}{v + x}$.

- Evaluate ∫sin⁶ x dx.
- Define characteristic equation of the matrix A.
- (Short essay type)

4. Find the Cartesian equivalent of the polar equation $r^2\cos\theta\sin\theta = 4$.

UNIT - II

Answer any 7 questions. Each question carries 2 marks.

6. Check the continuity of the function $f(x,y) = \frac{x+y}{x-y}$.

 $(7 \times 2 = 14)$

7. Verify Euler's theorem on homogeneous function for the function

 $u(x,y) = \sin\left(\frac{x-y}{x+v}\right)^{1/2}$.

P.T.O.

K25U 1320

8. Use the chain rule to find the derivative of w = xy with respect to θ along the

- path $x = \cos\theta$, $y = \sin\theta$. 9. Evaluate $\int_{0}^{\pi/2} \sin^{7}x \, dx$.
- 10. Evaluate $\int_0^{\pi/2} \cos^6 x \, dx$.
- 11. Evaluate $\int_{-\pi/4}^{\pi/4} \tan x \, dx$.
- 12. Graph the sets of points whose polar coordinates satisfy the following conditions $-3 \le r \le 2$ and $\theta = \frac{\pi}{4}$.
- 13. Write the Cartesian equation of the polar equation $r^2 = 4r\cos\theta$. 14. Find the eigen values of the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
- 15. Give the matrix associated with the quadratic form
- $6x_1^2 + 17x_2^2 + 3x_3^2 + 2x_1x_3 + 14x_2x_3 + 20x_1x_2$ Express of A⁻¹ as a polynomial in A.

(Essay type) Answer any 4 questions. Each question carries 3 marks.

UNIT - III

17. Describe the graph of the function f(x, y) = 1 - x - y. 18. Evaluate $\int_{0}^{\pi/4} (\cos 2\theta)^{3/2} \cos \theta d\theta$.

 $(4 \times 3 = 12)$

- 19. Show that $\int_{0}^{1} x^{3/2} (1-x)^{3/2} dx = \frac{3\pi}{128}$. 20. Find the area of the surface generated by revolving about the x - axis, the
- portion in the first and second quadrants of the circle $x^2 + y^2 = a^2$. 21. Find the area of the region that lies inside the circle r=1 and outside the
- cardioid $r = 1 \cos\theta$.

23. Prove that an eigen vector associated with the eigen value a of the diagonal matrix is the column vector with 1 in row j and other elements zero.

about the x - axis.

 $(2 \times 5 = 10)$

K25U 1320

UNIT - IV (Long essay type) Answer any 2 questions. Each question carries 5 marks.

22. Find the eigen values and corresponding eigen vectors of A=

24. If $\theta = t^n e^{-r^2/4t}$, what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$?

27. Diagonalize the following matrix, if possible A=