Reg. No. :

Name :

Second Semester B.Sc. (Hon's) Mathematics Degree (CBCSS - OBE -Supplementary/Improvement) Examination, April 2025 (2021 to 2023 Admissions) Core Course

2B05BMH: CALCULUS - II

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions. Each question carries 1 mark. Define Cycloid.

 $(4 \times 1 = 4)$

Write the standard equation of the "four-leaved rose".

or vertical.

- Define sequence of real numbers.
- 4. State alternating series estimation theorem.
- SECTION B

Write down the general equation of the hyperboloid of one sheet.

Answer any 6 out of 9 questions. Each question carries 2 marks. $(6 \times 2 = 12)$

- 6. Eliminate parameter to find a Cartesian equation of the curve x = 3 4t, y = 2 - 3t. 7. Find the points on the curve $x = t^3 - 3t$, $y = t^2 - 3$, where the tangent is horizontal
- 8. Test the series $\sum_{n=1}^{\infty} \frac{1}{2^n 1}$ for convergence or divergence.
- Show that every absolutely convergent series is convergent.

P.T.O.

10. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$

K25U 1406

- 11. Find the angle between the planes x + y + z = 1 and x 2y + 3z = 1.
- 12. Prove that $\frac{d}{dt} [\vec{u}(t) \cdot \vec{v}(t)] = \vec{u}(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}(t)$.
- 13. Find the directional derivative of $f(x, y) = x^3y^4 + x^4y^3$ at the point (1, 1) in the direction given by the angle $\theta = \frac{\pi}{6}$
- 14. Find y' if $x^3 + y^3 = 6xy$ SECTION - C
- Answer any 8 out of 12 questions. Each question carries 4 marks.

your answer.

15. Show that the surface area of a sphere of radius r is $4\pi r^2$.

 For α ∈ Q, calculate lim_{n→∞} sin(n! απ). 17. Determine whether the series $\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^3}$ converges or diverges ? Justify

conditionally convergent or divergent. Justify your answer. 19. Find the Taylor series of $f(x) = \sin x$ centered at $\frac{\pi}{3}$

20. Find symmetric equations for the line of intersection L of the planes

18. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n e^{\frac{1}{n}}}{n^3}$ is absolutely convergent,

Find the parametric equations for the tangent line to the helix with vector equation $\mathbf{r}(\mathbf{t}) = 2\cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$ at the point $\left[0, 1, \frac{\pi}{2}\right]$.

5x - 2y - 2z = 1 and 4x + y + z = 6.

22. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial v}$ if $x^3 + y^3 + z^3 + 6xyz = 1$.

25. Determine the set of points at which the function $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \end{cases}$

is continuous.

 $\vec{v} = i + 2j - k$.

-3-

23. Find directional derivative of $f(x, y, z) = x \sin yz$ at (1, 3, 0) in the direction of

24. A particle moves with position function $r(\vec{t}) = t^2 i + t^2 j + t^3 k$. Find the tangential

K25U 1406

26. Find the local maximum and minimum values and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1.$

and normal components of acceleration.

 $(2 \times 6 = 12)$

b) Find the radius of convergence and interval of convergence of the series

27. a) Show that if $a_n > 0$ and $\lim_{n \to \infty} na_n \neq 0$, then $\sum a_n$ is divergent.

Answer any 2 out of 4 questions. Each question carries 6 marks.

- 28. a) Find the extreme values of $f(x, y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$. b) Use Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter P is a square.
- 29. a) Find the arc length of the circular helix with vector equation
 - $r(\vec{t}) = \cos t i + \sin t j + t k$ from the point (1, 0, 0) to the point (1, 0, 2 π). b) Find an equation of the plane that passes through the points (0, -2, 5) and (-1, 3, 1) and is perpendicular to the plane 2z = 5x + 4y.
- 30. a) Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).

b) Find the area of the region enclosed by one loop of the curve $r^2 = \sin 2\theta$.