Reg. No. :

Name :

Second Semester B.Sc. (Hon's) Mathematics Degree (C.B.C.S.S. -Supplementary) Examination, April 2025 (2019 and 2020 Admissions)

BHM 202 : ABSTRACT ALGEBRA AND LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Give a subgroup of \mathbb{Z} .
- 2. Write an example of abelian group, which is not cyclic.
- 3. Give a basis of \mathbb{R}^2 over \mathbb{R} .
- 4. What is the dimension of \mathbb{R}^n over \mathbb{R} ?
- 5. Is $T: \mathbb{R} \to \mathbb{R}$ defined by $T(x) = x^2$ linear? Justify your answer.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. 6. Define finite and infinite groups with examples.

- 7. Show that in a group G with binary operation *, there is one and only one element $e \in G$ such that e * x = x * e = x.
- 8. Is the set $G = \mathbb{Q}^c U\{0\}$ group under addition ?
- 9. Find (1, 3, 6) (2, 8) (4, 7, 5).
- 10. Give an example to show that the group S_3 is non-abelian.
- 11. Show that the set $\{(1, 0), (0, 1)\}$ spanns \mathbb{R}^2 . 12. Write all subspaces of \mathbb{R}^3 over \mathbb{R} .

P.T.O.

K25U 1451

- 13. Find the dimension of the subspace $W = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. 14. Find the nullity and rank of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$
- by T(x, y) = (x + y, 0). SECTION - C

 $(6 \times 2 = 12)$

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

-2-

15. Show that $U = \{1, -1, i, -i\}$, $i = \sqrt{-1}$ is an abelian group under multiplication.

- Let G be a group and a be one fixed element of G. Show that
- $H_a = \{x \in G : xa = ax\}$ is subgroup of G. Show that every cyclic group is abelian.
- Find all cyclic subgroups of S₃.
- 19. Write the permutation (12345) in product of 2-cycles.
- 20. Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{pmatrix}$. Compute
- α^{-1} and β^{-1} . 21. Let $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V. Then show that every element v ∈ V can be expressed in uniquely in the form of $v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$, c_i are scalars for every i.
- 22. Define linearly independent and spanning set. Show that the set {(1, 0), (0, 1)} is linearly independent and spans \mathbb{R}^2 . 23. Write a basis for \mathbb{R}^3 over \mathbb{R} . Express (1, 0, 0) as the linear combination of the basis.
- the standard basis of \mathbb{R}^2 . 25. T and U be the linear operators on \mathbb{R}^2 defined by T(x, y) = (y, x) and U(x, y) = (x, 0). Find ToU and UoT.

24. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x, 0). Find the matrix of T with respect to

- 26. Define null space of a linear transformation. Find the null space of the linear map T(x, y, z) = (x - y, x + 2y, y + 3z).

-3-

SECTION - D

27. Show that in a group G, the identity element and inverse of each element is unique.

K25U 1451

 $(8 \times 4 = 32)$

28. Write the group representation table of all groups of order 4. 29. Let V and W be finite dimensional vector spaces and T : V \rightarrow W be a linear

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- transformation. Show that dim(V) = dim Im(T) + dim Ker(T) = rank T + Nullity T.30. Let V be a finite dimensional vector space. Let T : $V \rightarrow V$ be a linear map. Show
- that the following statements are equivalent. T is bijective
- iii) Im T = V.

ii) Ker T = {0}

 $(2 \times 6 = 12)$