Reg. No. : Name :

> Second Semester B.Sc. (Hon's) Mathematics Degree (CBCSS - Supplementary) Examination, April 2025 (2019 and 2020 Admissions) BHM 204: THEORY OF NUMBERS AND EQUATIONS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. $(4 \times 1 = 4)$

- 1. For integers a, b prove that if a|b and b|a, then $a = \pm b$.
- 2. Define the greatest common divisor of two integers a and b.
- 3. Determine whether the Diophantine equation 14x + 35y = 93 is solvable?
- 4. For any choice of positive integers a and b; lcm(a, b) = ab if and only if gcd(a, b) = 1.
- 5. State Descartes' rule of signs for negative roots.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12) 6. If a|bc, with gcd(a, b) = 1, then prove that a|c.

- 7. Prove that a and b are relatively prime if and only if there exist integers x and y such that ax + by = 1.
- If a|c and b|c, with gcd(a, b) = 1, then ab|c. 9. Use the Euclidean algorithm to obtain integers x and y satisfying
- Determine all solutions of 56x + 72y = 40.

gcd(24, 138) = 24x + 138y.

P.T.O.

11. If p is a prime, then $a^p \equiv a \pmod{p}$ for any integer.

K25U 1453

-2-

- 12. Remove the fractional coefficients from the equation $x^3 + \frac{1}{4}x^2 \frac{1}{16}x + \frac{1}{72} = 0$.
- 13. Solve the equation $x^4 + 2x^3 5x^2 + 6x + 2 = 0$ of which one root is $1 + \sqrt{-1}$. 14. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, form the equation
- whose roots are $\alpha\beta$, $\beta\gamma$, $\gamma\alpha$. SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

15. Solve the linear Diophantine equation 221x + 35y = 11.

 Prove that c ≡ d (mod n) if and only if c and d leave the same non-negative remainder when divided by n.

be in geometric progression.

- 17. Solve the system of three congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$. 18. If $ka \equiv kb \pmod{n}$, then $a \equiv b \pmod{\frac{n}{d}}$ where $d = \gcd(k, n)$.
- 19. If p, q_1 , q_2 ,... q_n are all primes and $p|q_1q_2q_3...q_n$, then $p=q_k$ for some k, $1 \leq k \leq n$.
- 21. If the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals the sum of the other two, prove that $p^3 + 8r = 4pq$.

20. Find the condition that the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ may

23. Find the number of real roots of the equation $x^3 + 18x - 6 = 0$. 24. If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, form an equation

22. Solve the equation $6x^6 - 35x^5 + 56x^4 - 56x^2 + 35x - 6 = 0$.

- whose roots are $\alpha \frac{1}{\beta \gamma}$, $\beta \frac{1}{\gamma \alpha}$, $\gamma \frac{1}{\alpha \beta}$
- 25. Find the condition that all the roots of the equation $x^3 + px + q = 0$ may be real. 26. Find $\frac{1}{\alpha^5} + \frac{1}{\beta^5} + \frac{1}{\sqrt{5}}$, where α , β , γ are the roots of the equation $x^3 + 2x^2 - 3x - 1 = 0$.

K25U 1453

29. If a, b, c be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are $bc - a^2$, $ca - b^2$, $ab - c^2$. 30. Solve the equation $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$, given that two of its roots are

-3-

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12)

27. Given integers a and b, not both of which are zero, prove that there exist integers

x and y such that gcd(a, b) = ax + by.

equal in magnitude and opposite in sign.

28. State and prove Fermat's little theorem.