ú	IMPOUNTS:	BIR HER	Brown III	RES BREEZE	INCOME	CHES	1111 1881	
7	10210111	Ш	- 1 844 18 44 1 844		18:24	25318	1111 1111	
ı		112 112		DH 511 S	18155	HIST	1111 3 1112	

K25U 0833

0

Reg. No.	:
Name :	

IV Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, April 2025 (2019 to 2023 Admissions) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT-ST: Mathematics for Statistics-IV

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any four questions. Each question carries one mark.

 $(4 \times 1 = 4)$

- 1. Write one dimensional heat equation.
- 2. Write Newton's forward difference interpolation formula.
- 3. What is the geometrical significance of Trapezoidal rule?
- 4. Find the volume of the solid generated by revolving a region between the y-axis and a curve x = R(y), $c \le y \le d$ about the y-axis.
- 5. Define forward difference operator.

PART - B

Answer any seven questions. Each question carries 2 marks.

 $(7 \times 2 = 14)$

- 6. Verify that $u = x^4 + y^4$ satisfies poisson equation with $f = 12(x^2 + y^2)$.
- 7. Find the value of c for which $u = e^{-\pi^2 t} \sin 4x$ satisfies $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.
- 8. Using bisection method find a real root of the equation $x^3 4x 9 = 0$ correct to three decimal places.
- 9. Use Newton Raphson method to find a root of the equation $x^3 2x 5 = 0$.

P.T.O.

K25U 0833

- Certain corresponding values of x and log₁₀x are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find log₁₀ 301.
- 11. Evaluate $I = \int_0^1 \frac{dx}{1+x}$ using Trapezoidal rule taking h = 0.125.
- 12. Evaluate $I = \int_0^1 \frac{dx}{x^3 + x + 1}$ using Simpson's $1/3^{rd}$ rule with h = 0.25.
- 13. Given $\frac{dy}{dx} = 1 + xy$, y (0) = 1. Using Taylor's series compute y(0.1) correct to four decimal places.
- 14. Find the volume of the solid generated by revolving the region between the y-axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$ about the y-axis.
- 15. The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

PART - C

Answer any four questions. Each question carries three marks.

(4×3=12)

- 16. Find solutions u of the PDE $u_{xx} = u$ depending on x and y.
- 17. Using Newton's forward difference formula, find $s_n = 1^3 + 2^3 + 3^3 + ... + n^3$.
- 18. Using Lagrange's interpolation formula, find the form of the function y(x) from the following table.

X	0	1	3	4
У	-12	0	12	24

19. A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines x = 0 and x = 1 and the curve through the points with the following coordinates:

Х	0.00	0.25	0.50	0.75	1.00
V	1.0000	0.9896	0.9589	0.0000	0.8415

Estimate the volume of the solid formed, giving the answer to three decimal places.

20. Explain Euler's method.

K25U 0833

- 21. Solve by Euler's modified method the problem $\frac{dy}{dx} = x + y$, y(0) = 0. Choose h = 0.2 and compute y(0.2).
- 22. Find the lateral surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$, $0 \le x \le 4$ about the x-axis.

Answer any two questions. Each question carries five marks.

 $(2 \times 5 = 10)$

- 23. Solve the following PDE:
 - a) $u_{xx} = u$.
 - b) $u_y + 2yu = 0$.
- 24. The table below gives the values of tan x for $0.10 \le x \le 0.30$:

X	0.10	0.15	0.20	0.25	0.30
y = tan x	0.1003	0.1511	0.2027	0.2553	0.3093

- 25. Use Runge-Kutta method to approximate y when x = 0.1, given that y (0) = 1 and $\frac{dy}{dx} = x + y$.
- 26. Find the area of the surface generated by revolving the curve $x = \frac{1}{3}y^{3/2} y^{1/2}$, $1 \le y \le 3$ about y-axis.