Reg. No.	:
Name :	

Sixth Semester B.Sc. Mathematics (Honours) Degree (C.B.C.S.S. - OBE -Regular/Supplementary/Improvement) Examination, April 2025 (2021 and 2022 Admissions)

Core Course

6B24 BMH: DIFFERENTIAL GEOMETRY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4x1=4) Define level sets.

- 2. Sketch the vector field on \mathbb{R}^2 of X(p) = (p, X(p)) where X(p) = (1, 0). Define n-surface.
- Define Weingarten map. Define the term Levi-Civita parallel.
- SECTION B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12) 6. Define the velocity vector of a parametrized curve and find the velocity of the

- parametrized curve $\alpha(t) = (\cos t, \sin t, t)$. 7. Explain why an integral curve of a vector field cannot cross itself as does the
- parametrized curve. Define smooth functions and smooth vector fields.
- 9. "Every surface is always open". Is this statement true? Justify your answer.
- 10. Let X and Y be smooth vector fields along the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$,
- then prove that (X + Y) = X + Y. Define connected set.

P.T.O.

12. Compute $\nabla_{v} f$ where $f(x_1, x_2) = x_1^2 - x_2^2$, $v = (1, 1, \cos\theta, \sin\theta)$.

K25U 0321

- 13. What is circle of curvature?
- Explain the geometric meaning of L_n.
- SECTION C

15. Find the integral curve through p = (1, 1) of the vector field on \mathbb{R}^2 of X(p) = (p, X(p)) where X(p) = (0, 1).

Answer any 8 questions. Each question carries 4 marks.

 $(8 \times 4 = 32)$

- 16. Determine whether the vector field $X(x_1, x_2) = (x_1, x_2, 1, 0)$, $U = \mathbb{R}^2$ is complete or not.
- 17. Find all the level sets of the function $f(x_1, x_2, ..., x_{n+1}) = x_1^2 + x_2^2 + ... + x_{n+1}^2$. Prove that geodesics have constant speed.
- $\sin(at + b)$, ct + d) is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 .

Prove that the unit n-sphere is an n-surface.

graph of f is an n-surface in \mathbb{R}^{n+1} .

Compute the Weingarten map of the hyperplane.

21. Let $S \subset \mathbb{R}^{n+1}$ be a connected n-surface in \mathbb{R}^{n+1} . Then prove that there exist on S exactly two smooth unit normal vector fields N₁ and N₂, and $N_2(p) = -N_1(p)$ for all $p \in S$.

22. Let $f: U \to \mathbb{R}$ be smooth function on U, U is open in \mathbb{R}^n . Then prove that the

19. For each a, b, c, $d \in \mathbb{R}$ prove that the parametrized curve $\alpha(t) = (\cos(at + b),$

- 23. Let S be an n-surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field N. Let $p \in S$ and $v \in S_p$. Then for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, prove that $\ddot{\alpha}(t_0) \cdot N(p) = L_p(v) \cdot v$.
- $a_1x_1 + a_2x_2 + \dots + a_{n+1}x_{n+1} = b$, where $a = (a_1, a_2, \dots, a_{n+1}) \neq (0, 0, \dots, 0)$.

the outward normal vector $\frac{\nabla f}{\|\nabla f\|}$. Prove that the curvature at each point of C is $\frac{-1}{r}$.

K25U 0321

SECTION - D Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12) 27. Let U be an open set in \mathbb{R}^{n+1} and let $f:U\to\mathbb{R}$ be smooth. Let $p\in U$ be a regular

25. Let S be an n-surface in \mathbb{R}^{n+1} , let p, q \in S and let α be a piecewise smooth

26. Let C be the circle $f^{-1}(r^2)$, where $f(x_1, x_2) = (x_1 - a)^2 + (x_2 - b)^2$, oriented by

along α is a linear map which is one to one and onto.

parametrized curve from p to q. Then prove that parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$

28. Let a, b, $c \in \mathbb{R}$ be such that $ac - b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipse $ax_1^2 + 2bx_1x_2 + cx_2^2 = 1$ are of the form $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$ where λ_1 and λ_2 are the eigenvalues of the matrix

point of f and let c = f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$

29. State and prove any three properties of Levi-Civita parallelism.

at p is equal to $(\nabla f(p))^{\perp}$.

- 30. Let $\alpha(t) = (x(t), y(t)), t \in I$ be a local parametrization of the oriented plane curve C. Show that $K \circ \alpha = \frac{x'y'' - y'x''}{(x^2 + y^2)^{3/2}}$.