Reg. No	L :
Name:	

Sixth Semester B.Sc. Mathematics (Honours) Degree (CBCSS - OBE -Regular/Supplementary/Improvement) Examination, April 2025 (2021 and 2022 Admissions) Core Course 6B25 BMH : TOPOLOGY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- Give an example of a metric on C.
- 2. Let X be a metric space with metric d. When do we say that a sequence {xn} of points in X is convergent?
- 3. Write the discrete topology of the set {1, 2}. 4. Let X be the subspace [-1, 1] of the real line. Determine whether the sets
- [-1, 0] and (0, 1] form a separation of X. Justify. Give an example of a subspace of a Lindelof space, which is not Lindelof. (4x1=4)
- SECTION B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. Prove that in any metric space X, each open sphere is an open set.

- 7. Let A be a subset of an arbitrary metric space X. Give any two properties of
- Int(A). 8. State Cantor's intersection theorem.
- 9. Let X be a set and $\mathcal B$ be a basis for a topology Γ on X. Then prove that Γ equals the collection of all unions of elements of \mathcal{B} .

P.T.O.

K25U 0322

Prove that every finite point set in a Hausdorff space X is closed.

- If the sets C and D form a separation of X and if Y is a connected subspace of X.
- then prove that Y lies entirely within either C or D. 12. Let f: X → Y be a bijective continuous function. If X is compact and Y is
- Hausdorff, then prove that f is a homeomorphism. Prove that a product of Hausdorff spaces is Hausdorff.
- Define normal space and give an example.
- Answer any 8 questions out of 12 questions. Each question carries 4 marks.

 $(6 \times 2 = 12)$

SECTION - C

15. Prove that in any metric space X, each closed sphere is a closed set.

- Let X be a metric space. Then prove that any finite intersection of open sets in X is open.
- 17. Let X and Y be metric spaces and f a mapping of X into Y. Prove that if f is continuous, then f⁻¹(G) is open in X whenever G is open in Y.

18. Let X be a topological space. Suppose that c is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C

- such that $x \in C \subset U$. Then prove that C is a basis for the topology of X. 19. Prove that the collection $S = \{\pi_1^{-1}(U)|U \text{ open in } X\} \cup \{\pi_2^{-1}(V)|V \text{ open in } Y\}$ is a subbasis for the product topology on $X \times Y$.
- open sets U_{α} such that $f|U_{\alpha}$ is continuous for each α . 21. Prove that the image of a connected space under a continuous map is connected.

22. Let Y be a subspace of X. Prove that Y is compact if and only if every covering

20. Prove that the map $f: X \to Y$ is continuous if X can be written as the union of

23. Let $f: X \to Y$ be a continuous map of the compact metric space (X, d_X) to the metric space (Y, d_v). Then prove that f is uniformly continuous.

of Y by sets open in X contains a finite subcollection covering Y.

Prove that a subspace of a regular space is regular.

 $(8 \times 4 = 32)$

 $(2 \times 6 = 12)$

K25U 0322

Answer any 2 questions out of 4 questions. Each question carries 6 marks. 27. Let X be a complete metric space and let Y be a subspace of X. Then prove that Y is complete if and only if it is closed.

28. Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if

SECTION - D

24. Let X be a topological space. Let one-point sets in X be closed. Then prove that X is regular if and only if given a point x of X and a neighbourhood U of x,

there is a neighbourhood V of x such that $V \subset U$.

it equals the intersection of a closed set of X with Y.

Prove that every metrizable space is normal.

30. Suppose that X has a countable basis. Then prove that

a) Every open covering of X contains a countable subcollection covering X.

b) There exists a countable subset of X that is dense in X.

29. Prove that every compact subspace of a Hausdorff space is closed.