Reg. No.:	
	30
Name :	

Sixth Semester B.Sc. Mathematics (Honours) Degree (CBCSS -Supplementary) Examination, April 2025 (2019 - 2020 Admissions) Core Course BHM602: TOPOLOGY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of the five questions. Each question carries $(4 \times 1 = 4)$ 1 mark. State True or False: "Union of two topologies on a set is again a topology."

- Give an open set in ℝ, which is open with respect to scattering topology but not
- with respect to usual topology. Define embedding of a space X into another space Y.
- 4. Define compact set. Give an example of an infinite compact set in \mathbb{R} .
- State True or False: "Every T, space is T₂."
- SECTION B

Answer any six questions out of the nine questions. Each question carries

 $(6 \times 2 = 12)$ 2 marks. Show that usual topology is weaker than semi-open interval topology.

- $7. \ \ \text{If} \ \ X \ = \ \{a, \ b, \ c\}, \ \ \text{let} \ \ \tau_1 = \left\{\phi, \ X, \{a\}, \{a, b\}\right\} \ \text{and} \ \tau_2 \ = \left\{\phi, \ X, \{a\}, \{b, c\}\right\}. \ \ \text{Find the}$
- smallest topology containing τ_1 and τ_2 .

P.T.O.

8. Consider Y = [-1, 1] as a subspace of \mathbb{R} . Let B =

4 marks.

K25U 0329

 $\left\{x: \frac{1}{2} < |x| < 1\right\}$. Is B an open

 $(8 \times 4 = 32)$

set in Y? Is B an open set in \mathbb{R} ? Justify your answers. Define open map. Give an example. 10. Let X and Y be two sets. Give a topology on Y such that all functions from X to

-2-

- Y are continuous irrespective of the topology on X.
- State Lebesgue covering lemma. 12. Can [0, 1] homeomorphic with (0, 1)? Justify your answer.
- State Urysohn's lemma.

19. Prove that $\overline{A} = A \cup A'$.

Prove that Y is compact.

SECTION - C

14. Define T₄-space. Is ℝ with usual topology a T₄-space ?

Prove that second countability is a hereditary property.

Answer any eight questions out of the twelve questions. Each question carries

Prove that Sierpinski space is not obtainable from a pseudo metric.

Prove that composition of two continuous functions is continuous.

Prove that intersection of topologies is again a topology.

- Find out the dense subsets of discrete, indiscrete and cofinite spaces. 21. Let X be a compact space and suppose $f: X \to Y$ is continuous and onto.
- 22. If X_1 and X_2 are connected topological spaces, then prove that $X_1 \times X_2$ is connected in the product topology. Prove that every second countable space is separable.

Answer any two questions out of the four questions. Each question carries

6 marks.

Prove that property of T₂ is hereditary.

Then show that X is normal.

27. a) Define hereditary property. Give an example of a property which is not hereditary.

 $(2 \times 6 = 12)$

K25U 0329

a) Define interior of A. Show that int(A) is an open set. b) Define closure of A. Show that A is closed.

SECTION - D

-3-

Suppose that a space X has the property that for every closed subset A of X, every continuous real valued function on A has a continuous extension to X.

Let X be a space and A ⊂ X.

b) Prove that metrisability is a hereditary property.

Prove that every completely regular space is normal.

29. Prove that a subset of R is connected iff it is an interval. Prove that all metric spaces are T_a.