Reg. No.:

Name :

IV Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S.-OBE -Regular/Supplementary/Improvement) Examination, April 2025 (2021 - 2023 Admissions) 4B14 BMH: ADVANCED REAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

PART - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Determine the points of continuity of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$, $x \in \mathbb{R}$.
- 2. Define Reimann integral of a function.
- Let I = [0,4]. Find the norm of the partition P = (0, 1, 2, 4). 4. State Cauchy criterion for uniform convergence.
 - Define gamma function.

Answer any 6 questions out of 9 questions, Each question carries 2 marks.

PART - B

6. State Bolzano's intermediate value theorem.

 $(6 \times 2 = 12)$

- Give an example of a uniformly continuous function.
- State second form fundamental theorem of calculus.

8. Prove that every constant function on [a, b] is Reimann integrable.

- 10. Evaluate $\lim e^{-nx}$ for $x \in \mathbb{R}$, $x \ge 0$.
- 11. Determine the radius of convergence of the series $\sum a_n x^n$, where $a_n = \frac{x^n}{n!}$.

P.T.O.

 $(8 \times 4 = 32)$

K25U 0987



14. Prove that $\beta(m,n) = \beta(n,m)$. PART-C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

State and prove preservation of intervals theorem. 16. Define Lipschitz function. Prove that every Lipschitz function is uniformly

continuous.

- 17. Prove that $f(x) = x^2$ is not uniformly continuous on $A = [0, \infty)$. 18. If f, $g \in R[a, b]$, Prove that $f + g \in R[a, b]$.
- 19. Let h(x) = x on [0,1]. Using squeeze theorem, prove that h is Reimann
- integrable on [0,1]. 20. Let $f \in R[a, b]$. Define $F(z) = \int f$ for $z \in [a, b]$. Prove that F satisfies Lipschitz
- condition. 21. Prove that a sequence (f_n) of bounded functions on $A\subseteq \mathbb{R}$ converges uniformly on A to f if and only if $\|f_n - f\|_A \to 0$. 22. Show that if (f_n) , (g_n) converge uniformly on the set A to f, g respectively, then
- $(f_n + g_n)$ converges uniformly on A to f + g. 23. State and prove Cauchy Hadamard theorem.

25. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. 26. Evaluate $\int_{0}^{1} x^{7} (1-x)^{\theta} dx$.

 $(2 \times 6 = 12)$

K25U 0987

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

[a, b] is Reimann integrable.

State and prove maximum minimum theorem.

24. Prove that $\int_{-\infty}^{-\infty} \frac{1}{1-x} dx$ diverges.

28. State squeeze theorem. Prove that every monotone real valued function on

- 29. Let (h_n) be a sequence of bounded functions on $A \subseteq \mathbb{R}$. Prove that (f_n) converges uniformly on A to a bounded function f if and only if for each ∈> 0
- there is a number $H(\epsilon)$ in N such that for all m, $n \ge H(\epsilon)$, then $||f_m f_n|| \le \epsilon$. Evaluate ∫e^{-x²}dx.

PART - D