Reg. No.:	
Name :	*

IV Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - Supplementary) Examination, April 2025 (2019 and 2020 Admissions)

BHM401: ADVANCED REAL ANALYSIS AND METRIC SPACES

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. $(4 \times 1 = 4)$ 1. Define Riemann sum of a function.

- Define the distance between two nonempty subsets.
- 3. Find the norm of the partition $P = \{0, 1, 2, 4\}$ of I = [0, 4].
- 4. Find $\lim \frac{nx}{1+x^2n^2} \forall x \in \mathbb{R}$. State substitution theorem.

Answer any 6 questions out of 9 questions. Each question carries 2 marks. $(6 \times 2 = 12)$

SECTION - B

- 6. Evaluate $\int_{-10}^{10} sgn(x)dx$ where sgn(x) denotes the signum function.
- 7. Differentiate between Pointwise convergence and uniform convergence of sequence of functions.
- 8. If $f \in R[a, b]$ and if $[c, d] \subseteq [a, b]$ then prove that the restriction of f to [c, d]is in R[c, d].
- State Weierstrass M-test.

Is an arbitrary union of closed sets closed? Justify.

P.T.O.

K25U 0992

11. Let (X, d) be a metric space. Then prove that empty set and the whole space

X are closed sets. State Holder's Inequality.

-2-

- State and prove arithmetic mean-geometric mean inequality.
- 14. Define cantor set.

determined.

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

SECTION - C

15. If $f \in R$ [a, b] then prove that the value of the integral is uniquely

- 16. If g is integrable on [a, b] and if f(x) = g(x) except for a finite number of points in [a, b] then prove that f is Riemann integrable and $\int_a^b f = \int_a^b g$.
- 17. If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then prove that $f \in \mathbb{R}$ [a,b]. 18. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f:A \to \mathbb{R}$. Then prove that
- f is continuous on A. 19. Show that $G_n(x) = x^n(1-x)$ for $x \in A = [0,1]$ converges uniformly on A.
- 20. Define Cauchy sequence. Does every Cauchy sequence converges ? Justify. 21. Let X = C[0,1], for $x, y \in X$ define $d(x,y) = \sup\{x(t) - y(t) : 0 \le t \le 1\}$. Calculate
- 22. Let (X, d) be a metric space and A, B be subsets of X. Then prove the following: a) If $A \subseteq B$ then $A^0 \subseteq B^0$. b) $(A \cap B)^0 = A^0 \cap B^0$.

then prove that Y is closed in X.

Prove that d' is a metric on X.

the distance between $x(t) = t & y(t) = t^2$.

25. Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is

open in X for all open subsets G of Y. Show that Thomae's function is Riemann integrable on [0,1]. SECTION - D

23. If Y is a nonempty subset of a metric space (X, d), and (Y, d_Y) is complete,

24. Let (X, d) be a metric space. Define $d': X \times X \to \mathbb{R}$ by $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$.

- Answer any 2 questions out of 4 questions. Each question carries 6 marks. 27. Let (fn) be a sequence of functions in R[a, b] and suppose that (fn)
- $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n.$ 28. The space B(S) of all real-or complex-valued functions f on S, each of which is bounded, with the uniform metric $d(f, g) = \sup |f(x) - g(x)| f, g \in B(S)$. Prove that B(S) with this metric is complete.

converges uniformly on [a, b] to f. Then prove that f ∈ R[a, b] and

- 29. Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f:A\to Y$ is continuous at $a\in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
- 30. Let $f: [a, b] \to \mathbb{R}$ and let $c \in (a, b)$. Then prove that $f \in \mathbb{R}[a, b]$ if and only if the restrictions to [a, c] and [c, b] are both Riemann integrable.