Reg. No.:

Name :

IV Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - O.B.E. -Regular/Supplementary/Improvement) Examination, April 2025 (2021 - 2023 Admissions)

4B15 BMH: INTRODUCTION TO ABSTRACT ALGEBRA AND LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions. Each question carries 1 mark each.

 $(4 \times 1 = 4)$

- 1. Does the operation 'ordinary subtraction' is a binary operation on the set of integers Z ?
- 2. Does the group \mathbb{Z}_6 is a cyclic group ? Justify your answer. 3. Give an example of a non abelian group.
- 4. Write the standard ordered basis of \mathbb{R}^3 .
- 5. Does the set $\{(1, 1)^T, (2, 2)^T\}$ is linearly independent set in \mathbb{R}^2 ? Justify your answer. SECTION - B

Answer any six questions from the following. Each question carries 2 marks. (6×2=12)

- 6. What is the subspace generated by $\{(1, 0, 0, -1)^T, (0, 0, 0, 1)^T\}$ in \mathbb{R}^4 ?
- 7. State the Rank-Nullity theorem.
- 8. Does the set $V = \{(x_1, x_2)^T \mid x_1 + x_2 = 0\}$ is a subspace of \mathbb{R}^2 ? Justify your answer.
- 9. Express the vector $\mathbf{w} = (1, 0)^T$ in \mathbb{R}^2 as a linear combination of the vectors $v_1 = (1, -1)^T$ and $v_2 = (-1, -1)^T$.
- 10. Prove or disprove that every group order 6 is abelian.

P.T.O.

K25U 0988

- 11. Let G be a group and a ∈ G. Prove that the order of a is same as the order of 12. Does the set $\{\sigma \in S_4 : \sigma(1) = 1 \text{ and } \sigma(3) = 3\}$ is a subgroup of S_4 ? Justify your
- $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \in S_4$. Find σ^{-21} . 13. Let σ=
- 14. Let G be a group and a, b \in G. Prove that $(ab)^{-1} = b^{-1} a^{-1}$.
- SECTION C

Answer any eight questions. Each question carries 4 marks each.

15. If $ab = a^{-1} b^{-1}$ for all a, b in a group G. Show that G must be abelian.

 $(8 \times 4 = 32)$

- 16. Prove the following: Let G be a group and a, b ∈ G. Then the equations ax = b and xa = b have unique solutions in G.
- Find all subgroups of the group Z₁₅.
- 18. Show that the set An is a subgroup of Sn.
- 19. Show that the set of all 2×2 matrices with determinant one is a group under matrix multiplication.
- 20. Let G be a group and a, $b \in G$. Show that $(aba^{-1})^n = ab a^{-1}$ if and only if $b^n = b$.
- 21. Prove that subgroup of a cyclic group is cyclic. 22. Prove or disprove : If H and K are subgroups of a group G, then H∪K is a
- subgroup of G. 23. Find the null space and dimension of the null space of the matrix
- $T \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} y \\ x \end{vmatrix}$. Find the matrix representation of T with respect to the standard basis $\{(1, 0)^T, (0, 1)^T\}$. Also find T^{-1} .
- that $T(v_1), T(v_2), ..., T(v_n)$ are linearly independent, show that $v_1, v_2, ..., v_n$ are linearly independent. 26. Find the rank of the matrix A = -1 2 -3

25. Let T: V \rightarrow W be a linear transformation. If $v_1, v_2, ..., v_n$ are elements in V such

Find the orbits and cycles of the permutation σ 28. Prove or disprove the following statements:

 $(2 \times 6 = 12)$

K25U 0988

 The set of rationals Q is cyclic. Every abelian group is cyclic.

Answer any two questions. Each question carries 6 marks each.

iii) S_n is non abelian for n > 2. 29. Let T: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by T y

30. i) Show that every subset of a linearly independent set is linearly independent.

SECTION - D

- Verify the Rank-Nullity Theorem for T. ii) Is T is invertible ? If so, find T⁻¹.
- ii) Let V be the space of all twice differentiable functions on [0, 1]. Find all $x(t) \in V$ such that x(t) and x'(t) are linearly dependent.