K25U 0993

Reg. No.:	
	7.
Name :	

IV Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. – Supplementary) Examination, April 2025 (2019 and 2020 Admissions) BHM 402 : ADVANCED ABSTRACT ALGEBRA

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Determine whether the map $\phi: \mathbb{R}^* \to \mathbb{R}^*$ under multiplication given by $\phi(x) = |x|$ is a homomorphism.
- Define index of a subgroup H of a group G. Define simple group.
- Is the matrix ring M₂(Z₂) is an integral domain? Justify.
- 5. Compute $(x+1)^2$ in $\mathbb{Z}_2[x]$.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- Find the partition of Z₆ into cosets of the subgroup H = {0, 3}. Find the index of (3) in the group Z₂₄.
- State the fundamental homomorphism theorem.
- Let H be a normal subgroup of G. Prove that γ : G → G/H given by $\gamma(x) = xH$ is a homomorphism with kernel H. Find the remainder of 8¹⁰³ when divided by 13.

P.T.O.

11. Find all solutions of the congruence $12x \equiv 27 \pmod{18}$.

K25U 0993

-2-

- 12. Let m be a positive integer and let $a \in \mathbb{Z}_m$ be relatively prime to m. For each
- $b \in \mathbb{Z}_m$, prove that the equation ax = b has a unique solution in \mathbb{Z}_m . 13. Let $f(x) = x^4 - 3x^3 + 2x^2 + 4x - 1$ and $g(x) = x^2 - 2x + 3$ in $\mathbb{Z}_5[x]$. Using division
- algorithm, find q(x) and r(x) so that f(x) = g(x) q(x) + r(x). 14. Let $\phi_3: \mathbb{Z}_7[x] \to \mathbb{Z}_7$ be the evaluation homomorphism. Compute
- $\phi_3 [(x^4 + 2x)(x^3 3x^2 + 3)].$ SECTION - C

 $(6 \times 2 = 12)$

15. Let ϕ be a homomorphism from a group G into a group G'. If K' is a subgroup of G', then prove that $\phi^{-1}[K']$ is a subgroup of G.

- 16. Let $\phi: G \to G'$ be a group homomorphism of G onto G'. Prove that if G is abelian then G' is abelian.
- 17. Let $\phi: GL(n, \mathbb{R}) \to \mathbb{R}^*$ be the mapping given by $\phi(A) = \det A$. Prove that ϕ is a homomorphism and find its kernel. 18. Compute the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6) / \langle (0,1) \rangle$.
- $(aH)(bH) = (ab)H, \forall a, b \in G$.
- 20. Let G be a group and C be the commutator subgroup of G. If N is a normal subgroup of G, then prove that G/N is abelian if and only if $C \le N$. 21. Prove that the cancellation laws hold in a ring R if and only if R has no divisors

19. Let H be a subgroup of G. Prove that H is normal if and only if

22. Show that for every integer n, the number n^{33} – n is divisible by 15. Prove that every finite integral domain is a field.

24. Factorize the polynomial $x^4 + 3x^3 + 2x + 4$ into linear factors in $\mathbb{Z}_5[x]$.

State and prove Factor Theorem.

over Q for any prime p.

SECTION - D

25. Prove that the polynomial $\phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$ is irreducible

 $(8 \times 4 = 32)$

 $(2 \times 6 = 12)$

K25U 0993

27. Let φ be a homomorphism from a group G into a group G'. Prove that Ker (φ) is a normal subgroup of G.

28. Prove that the following are three equivalent conditions for a subgroup H of a

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

- a) ghg⁻¹∈ H for all g∈G and h∈H. b) $ghg^{-1} = H$ for all $g \in G$.
 - c) gH = Hg for all g∈G.

group G to be a normal subgroup of G.

- 29. Prove that the set G_n of non-zero elements of \mathbb{Z}_n that are not zero divisors forms a group under multiplication modulo n.
- 30. If G is a finite subgroup of the multiplicative group ⟨F*,⋅⟩ of a field F, then prove that G is cyclic.