Reg. No. :

Name :

Sixth Semester B.Sc. Degree (C.B.C.S.S. - OBE - Regular/Supplementary/ Improvement) Examination, April 2025 (2019 to 2022 Admissions) CORE COURSE IN STATISTICS

6B11STA: Mathematical Methods for Statistics - III

Time: 3 Hours

Max. Marks: 48

PART - A

Answer all questions. Each question carries 1 mark.

 $(6 \times 1 = 6)$

- 1. Define analytic function.
- State a set of necessary conditions for a function to be analytic.
- 3. State Cauchy's theorem.
- 4. State Morera's theorem.
- Define Taylor's series.
- Define removable singularity.

Answer any seven questions. Each question carries 2 marks.

 $(7 \times 2 = 14)$

- 7. Examine whether the function $f(z) = \overline{Z}$ is analytic.
- 8. Show that the function $u = \cos(x) \cosh(y)$ is harmonic.
- 9. Prove that an analytic function with constant real part is constant.
- 10. Find $\int_C \frac{z^2 + 5z + 6}{z 2} dz$, where C is the circle of radius 1 and centre at the origin.
- 11. Find the singularity and its type of the function f(z) =
- 12. Explain pole with the help of an example.

P.T.O.

K25U 0183

- 13. What do you mean by radius of convergence of a power series.
- State Jordan's lemma.
- 15. Find the residue of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$ at z = 3.

PART - C

Answer any four questions. Each question carries 4 marks.

 $(4 \times 4 = 16)$

- 16. Show that the function $f(z) = u + iv = \begin{cases} \frac{xy(x+iy)}{x^2 + y^2}, & x+iy \neq 0 \\ x^2 + y^2, & x+iy \neq 0 \end{cases}$ satisfies Cauchy-Riemann equations at the origin, but not analytic at the point.
- 17. State and prove Cauchy's integral formula.
- 18. $\int_C \frac{e^{5z}}{z-\pi i} dz$, where C is the ellipse |z-2|+|z+2|=6.
- 19. Explain radius of convergence of a power series. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} (\log n)^n z^n$.
- 20. State and prove Cauchy's residue theorem.
- 21. Evaluate $\int_C \frac{e^z}{z(z-1)^2} dz$, where C is |z|=2.

Answer any two questions. Each question carries 6 marks.

 $(2 \times 6 = 12)$

- 22. Explain any one method of constructing analytic function with help of an example.
- 23. State and prove Poisson integral formula.
- 24. Find the Laurent series expression of $f(z) = \frac{1}{z^2 3z + 2}$ for |z| > 2. 25. Evaluate $\int_0^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$