Reg. No. :	 Reg. No. :
Name :	 Name :

I Semester M.Sc. Degree (C.B.S.S. – Supplementary) Examination, October 2024 (2021 and 2022 Admissions)

MATHEMATICS MAT1C03 : Real Analysis

Time: 3 Hours

PART - A

Max. Marks: 80

1. Define countable set. Prove that the set of all integers is countable.

Answer any four questions from this Part. Each question carries 4 marks.

 $(4 \times 4 = 16)$

- 2. If p is a limit point of a set E, then prove that every neighborhood of
- p contains infinitely many points of E. 3. When can you say that a function f is said to be differentiable at a point x?
- $x \in [a, b]$, then prove that f + g is differentiable at x and (f + g)'(x) = f'(x) + g'(x). 4. Suppose f is differentiable in (a, b). If f'(x) = 0 for all $x \in (a, b)$, then prove that f is constant.

Suppose f and g are defined on [a, b] and are differentiable at a point

- 5. Let f be an increasing function defined on [a, b] and let x_0, x_1, \ldots, x_n be n+1 points such that $a=x_0 < x_1 < x_2 < \ldots < x_n = b$. Then prove that
- 6. Prove that $f(x) = x^2 \cos\left(\frac{1}{x}\right)$, if $x \neq 0$, f(0) = 0 is of bounded variation on [0, 1].

 $\sum_{k=1}^{n-1} [f(x_k +) - f(x_k -)] \le f(b) - f(a).$

P.T.O.

question carries 16 marks.

has the following property.

 $|f(b) - f(a)| \le (b - a)|f'(x)|.$

K24P 4042

 $(4 \times 16 = 64)$

K24P 4042

Answer any four questions from this part without omitting any Unit. Each

PART - B

Unit- I 7. a) Let $\{E_n\}$, n = 1, 2, 3, ... be a sequence of countable sets and put

$S = \bigcup_{n=1}^{\infty} E_n$. Then prove that S is countable.

- b) Suppose $y \subset \subset X$. A subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.
- 8. a) Show that there exist perfect sets in R¹ which contain no segment. b) Prove that a subset E of the real line R1 is connected if and only if it
 - If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.
- 9. a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.

b) Suppose f is a continuous mapping of a compact metric space X into

a metric space Y. Then prove that f(X) is compact. c) If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then prove that f(E) is connected.

Unit - II

 a) Suppose f is continuous on [a, b], f'(x) exists at some point x ∈ [a, b], g is defined on an interval I which contains the range of f, and g is

differentiable at the point f(x). If h(t) = g(f(t)), (a $\le t \le b$), then prove that h is differentiable at x and h'(x) = g'(f(x))f'(x).

b) Give an example of a function f, which is differentiable at all points x, but f' is not a continuous function. Justify. a) State and prove Taylor's theorem. b) Suppose f is a continuous mapping of [a, b] into Rk and f is differentiable in (a, b). Then prove that there exists $x \in (a, b)$ such that

c) Define Riemann-Stiletjes integral of f with respect to α over [a, b].

13. a) State and prove the formula for "integration by parts". b) If f and F map [a, b] into R^k , if $f \in R$ on [a, b], and if F' = f, then prove that $\int_{0}^{\infty} f(t)dt = F(b) - F(a)$.

is discontinuous. Then prove that $f \in R(\alpha)$.

function α on [a, b], then prove that $|f| \in R(\alpha)$ and $\left|\int_{0}^{\beta} d\alpha\right| \leq \int_{0}^{\beta} |f| d\alpha$. 14. a) Let f be of bounded variation on [a, b] and assume that $c \in (a, b)$. Then prove that f is of bounded variation on [a, c] and on [c, b] and $V_f(a, b) = V_f(a, c) + V_f(c, b).$

c) If f maps [a, b] into R^k and if $f \in R(\alpha)$ for some monotonically increasing

-3-

discontinuity on [a, b], and α is continuous at every point at which f

b) Suppose $f \in R(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and

 $h(x) = \phi(f(x))$ on [a, b]. Then prove that $h \in R(\alpha)$ on [a, b].

Unit - III

12. a) Suppose f is bounded on [a, b], f has only finitely many points of

- b) Let f be of bounded variation on [a, b]. Let V be defined on [a, b] by $V(x) = V_f(a, x)$ if $a < x \le b$, V(a) = 0. Then prove that i) V is an increasing function on [a, b]. ii) V - f is an increasing function on [a, b].
 - b) Consider a rectifiable path f defined [a, b]. If $x \in (a, b]$, let $s(x) = \Lambda_f(a, x)$ and let s(a) = 0. Then prove that i) The function s so defined is increasing and continuous on [a, b].

a) Define Rectifiable paths and its arc length. If c ∈ (a, b) then prove

that $\Lambda_f(a, b) = \Lambda_f(a, c) + \Lambda_f(c, b)$.

ii) If there is no subinterval of [a, b] on which f is constant, then s is strictly increasing on [a, b].