Reg. No.: Name :

I Semester M.Sc. Degree (CBSS - Supplementary) Examination, October 2024 (2021 and 2022 Admissions) MATHEMATICS MAT1C04 : Basic Topology Time: 3 Hours

PART - A

Max. Marks: 80

Answer four questions from this part. Each question carries 4 marks.

1. Let (X, d) be a metric space, let $x \in X$ and let $\epsilon > 0$. Prove that $A = \{y \in X : d(x, y) \le \epsilon\} \text{ is a closed subset of } X.$

- 2. Prove that every second countable space is separable. Is the converse true? Justify your answer with an example.
- 3. Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) . Prove that a subset C of A is closed in (A, \mathcal{T}_A) if and only if there is a closed subset D of (X, \mathcal{I}) such that $C = A \cap D$.
- 4. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and let $(X_1 \times X_2, \mathcal{T})$ be the product space. Prove that the projection maps are continuous. Also show that the product topology is the smallest topology for which both projections are
- A topological space (X, I) is connected if and only if no nonempty proper subset of X is both open and closed. $(4 \times 4 = 16)$ 6. Define Cantor set.

continuous.

P.T.O.

Answer four questions from this part without omitting any Unit. Each question carries 16 marks.

K24P 4043

b) Let X be a set and let & be a collection of subsets of X such that $X = \bigcup \{S : S \in \mathcal{S}\}$. Prove that there is a unique topology \mathcal{T} on X such that

 \mathcal{S} is a subbasis for \mathcal{T} . c) Let $X = \{1, 2, 3, 4, 5\}$ and $\mathcal{S} = \{\{1\}, \{1, 2, 3\}, \{2, 3, 4\}, \{3, 5\}\}$. Prove that \mathcal{S} is a subbasis for a topology on X. Also find T.

-2-

PART - B

Unit - I

7. a) Let $\{\mathscr{T}_{\alpha}: \alpha \in \Lambda\}$ be a collection of topologies on a set X. Prove that

- 8. a) Let A and B be subsets of a topological space (X, \(\mathcal{T} \)). Prove that : A is open if and only if A = int A. ii) int (A) ⊆ int (B) whenever A ⊆ B.
 - iii) int $(A \cap B) = int (A) \cap int(B)$. iv) int (A) \cup int (B) \subseteq int (A \cup B).
 - b) Let $n \in \mathbb{N}$ and \mathcal{T} is the usual topology on \mathbb{R}^n . Prove that $(\mathbb{R}^n, \mathcal{T})$ is

points of A that converges to x.

 $\cap \{\mathcal{I}_{\alpha} : \alpha \in \Lambda\}$ is a topology on X.

- second countable.
- 9. a) Let (X, \mathcal{I}) be a topological space, Let $A \subset X$ and let $x \in X$. Prove that i) if there is a sequence of points of A that converges to x, then x ∈ A.
- b) Let (X, d) be a complete metric space and let A be a subset of X with
 - subspace metric $P = d|_{(A \times A)}$. Prove that (A, P) is complete if and only if A is a closed subset of X.

c) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $f: X \to Y$. Suppose

ii) if (X, \mathcal{T}) is first countable and $x \in \overline{A}$, then there is a sequence of

- (X, \mathcal{I}) is first countable and for each $x \in X$ and each sequence (x_n) such that $\langle x_n \rangle \to x$, the sequence $\langle f(x_n) \rangle \to f(x)$. Then prove that f is continuous.

-3-

Unit - II

b) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of first countable spaces and

let $X = \prod_{\alpha} X_{\alpha}$. Prove that (X, \mathcal{T}) is first countable if and only if \mathcal{T}_{α} is the

a) Prove that the topological properties Hausdorff and metrizability are

trivial topology for all but a countable number of α .

b) State and prove Pasting lemma.

for the product topology \mathcal{T} on $X_1 \times X_2$.

a) Give an example to show that separability is not hereditary.

c) Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and for i = 1, 2 let \mathcal{B}_i be

hereditary.

bases for \mathcal{T}_i . Then prove that $\mathcal{B} = \{U \times V : U \in \mathcal{B}_1 \text{ and } V \in \mathcal{B}_2\}$ is a basis

K24P 4043

12. a) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces, and

 $\prod_{\alpha \in \Lambda} A_{\alpha}$ is determined by the product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$.

for each $\alpha \in \Lambda$, let $(A_{\alpha}, \mathscr{T}_{A\alpha})$ be a subspace of $(X_{\alpha}, \mathscr{T}_{\alpha})$. Then prove that

the product topology on \prod_{A_n} is the same as the subspace topology on

b) Let $\{(Y_\alpha, \mathscr{U}_\alpha) : \alpha \in \Lambda\}$ be an indexed family of topological spaces. Let \mathscr{U} be the product topology on $Y = \prod_{Y_o}$, let (X, \mathcal{T}) be a topological space, and let $f: X \to Y$ be a function. Prove that f is continuous if and only if π_{α} of is continuous for each $\alpha \in \Lambda$.

Unit - III

13. a) Let $\mathscr T$ be the usual topology on $\mathbb R$. Prove that $(\mathbb R,\mathscr T)$ is connected.

b) State and prove intermediate value theorem.

c) Prove that the Cantor set is totally disconnected.

K24P 4043

b) Prove that a topological space (X, T) is locally connected if and only if $(4 \times 16 = 64)$ c) Prove that every 0-dimensional T₀ space is totally disconnected.

a) Prove that the fixed point property is a topological invariant.

i) If $\cap_{\alpha \in \Lambda} A_{\alpha} \neq \emptyset$ then (A, \mathscr{T}_A) is connected.

each component of each open set is open.

connected.

b) Prove that the topologist's sine curve is not pathwise connected.

15. a) Let $\{(A_{\alpha}, \mathscr{T}_{A\alpha}) : \alpha \in \Lambda\}$ be a collection of connected subspaces of a

topological space (X, $\mathscr T$) and let A = $\cup_{\alpha \in \Lambda} A_{\alpha}$. Then prove that

ii) If $\Lambda=\mathbb{N}$ and $A_n\cap A_{n+1}\neq\emptyset$ for each $n\in\mathbb{N}$, then (A,\mathscr{T}_A) is