Reg. No. : Name :

I Semester M.Sc. Degree (C.B.C.S.S. – O.B.E. – Reg./Supple./Imp.) Examination, October 2024

(2023 Admission Onwards)

MATHEMATICS/MATHEMATICS (Multivariate Calculus and Mathematical Analysis, Modelling and Simulation, Financial Risk Management) MSMAT01C04/MSMAF01C04: Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 5 questions from the following 6 questions. Each question carries 4 marks. 1. Let B be the collection of all circular regions (interiors of circles) in the plane.

- Show that B satisfies both conditions for a basis.
- 2. If $\{\tau_{\alpha}\}$ is a family of topologies on X. Is $\bigcup \tau_{\alpha}$ a topology on X ? Justify your answer. 3. Show that every order topology is Hausdorff.
- 4. Prove or disprove : There exist a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.
- Define a quotient space and give an example.
- Is the set of rationals Q connected ? Justify your answer.
- PART B

 $(5 \times 4 = 20)$

Answer any 3 from the following 5 questions. Each question carries 7 marks. 7. Let τ be a topology on a set X consisting of four sets, i.e. $\tau = \{\phi, X, A, B\}$ where

- A and B are non-empty proper subsets of X. What conditions must A and B satisfy? 8. Let τ be the topology on $\mathbb N$ consisting of ϕ and all subsets on $\mathbb N$ of the form
- $E_n = \{n, n + 1, n + 2, ...\}$ with $n \in \mathbb{N}$. i) List the open sets containing the point 5
 - ii) List the closed sets containing the point 5.

P.T.O.

K24P 3940

-2-

9. Determine whether the following spaces are connected and which of them

- are path connected in \mathbb{R}^2 ? Give reasons. i) $A = \{x \times y : x^2 + y^2 = 1\} - \{1 \times 0, 0 \times 1\}$
 - ii) $[0, 1] \times \{1\}$.
- 10. Identify the spaces that are homeomorphic to each other from the following.
- Give reasons. i) \mathbb{Z} and \mathbb{N}
 - ii) \mathbb{R} and \mathbb{R}^2
 - iii) $\{x \times y : x^2 + y^2 = 1\}$ and $\{x \times y : x^2 + y^2 \le 1\}$.
- 11. Find the closure and interior of each of the following sets: i) I, the set of irrational in \mathbb{R}
- ii) \mathbb{Q} , the set of rationals in \mathbb{R}
 - iii) T∪ℚ iv) I∩Q.

Answer any 3 from the following 5 questions. Each question carries 13 marks.

b) Prove that the collection

 $(3 \times 7 = 21)$

12. a) Prove that the topologies of \mathbb{R}_{l} and \mathbb{R}_{k} are strictly finer than the standard

 $S = \{\pi^{-1}, (U): U \text{ open in } X\} \cup \{\pi^{-1}, (V): V \text{ open in } Y\} \text{ is a sub-basis for the } Y$ product topology on X × Y.

topology on R but are not comparable with one another.

PART - C

 a) A subspace of a Hausdorff space is Hausdorff. b) The product of two Hausdorff spaces is Hausdorff.

c) If $A \subset B$, then $A \subset B$.

13. Prove the following:

14. Prove the following:

A finite Cartesian product of connected spaces is connected.

b) Prove the following: Let g: X→Z be a surjective continuous map. Let X*

b) The union of a collection of connected subspace of a topological space X

-3-

 $(3 \times 13 = 39)$

K24P 3940

15. Prove the following : a) The punctured euclidean space $\mathbb{R}^n - \{0\}$, where 0 is the origin in \mathbb{R}^n is path

quotient map.

connected for n > 1.

ii) If Z is Hausdorff, so is X*.

- b) The ordered square I2 connected but not path connected. 16. a) Give an example that the product of two quotient maps need not be a
 - be the following collection of subsets of X: $X^* = \{g^{-1}(\{z\}): z \in Z\}$. Give X^* the quotient topology.

a) Continuous image of a connected space is connected.

that have a point in common is connected.

- i) The map g induces a bijective continuous map f: X* → Z, which is a homeomorphism if and only if g is a quotient map.