Reg.	No.	:	
Nam			

I Semester M.Sc. Degree (CBCSS - OBE - Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards)

Mathematics/Mathematics (Multivariate Calculus and Mathematical Analysis, Modelling and Simulation, Financial Risk Management) MSMAF01C01/MSMAT01C01: ABSTRACT ALGEBRA

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any five questions. Each question carries 4 marks.

- 1. List all abelian groups, upto isomorphism, of order 360.
- 2. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_4$. Find the order of each of the elements. Is this group cyclic?
- Compute all Sylow 3-subgroups of S₄.
- State butterfly lemma.
- Find the center of S₃ × Z₄.
- 6. Express the polynomial $x^4 + 4$ as a product of linear factors in $\mathbb{Z}_5[x]$. (5×4=20)

PART - B

Answer any three questions. Each question carries 7 marks.

- 7. Show that every group of order p² is abelian.
- 8. State Sylow's third theorem. Prove that no group of order 30 is simple.
- 9. Let F be a field of quotients of D and let L be any field containing D. Prove that there exists a map $\psi: F \to L$ that gives an isomorphism of F with a subfield of L such that $\psi(a) = a$ for $a \in D$.

P.T.O.

K24P 3936

- State and prove second isomorphism theorem.
- 11. An ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal if and only if p(x) is irreducible over F. $(3 \times 7 = 21)$

PART - C

Answer any three questions. Each question carries 13 marks.

- 12. a) Let G_1, G_2, \ldots, G_n be groups. Prove that $\prod G_i$ is a group under the operation (a_1, a_2, \dots, a_n) $(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$. b) Find the order of (3, 10, 9) in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.

 - c) Let X be a G-set. For $x_1, x_2 \in X$, let $x_1 x_2$ if and only if there exists $g \in G$ such that $gx_1 = x_2$. Prove that \sim is an equivalence relation.
- 13. State and prove first Sylow theorem.
- 14. a) If H and K are finite subgroups of a group G, prove that $|HK| = \frac{(|H|)(|K|)}{|H \cap K|}$. b) Prove that any two fields of quotients of an integral domain D are
 - isomorphic.
- 15. a) Prove that two subnormal series of a group G have isomorphic refinements.
 - b) Prove that S₃ is solvable.
- 16. a) State and prove division algorithm for F[x]. b) Let $f(x) = x^4 - 3x^3 + 2x^2 + 4x - 1$ and $g(x) = x^2 - 2x + 3$ be two
 - polynomials in $\mathbb{Z}_5[x]$. Find q(x) and r(x) such that f(x) can be written as $(3 \times 13 = 39)$ f(x) = q(x)g(x) + r(x).