Reg. No.:....

Name :

I Semester M.Sc. Degree (C.B.C.S.S. – O.B.E. – Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards)

(2023 Admission Onwards)

Mathematics/Mathematics (Multivariate Calculus and Mathematical Analysis, Modelling and Simulation, Financial Risk Management)

Analysis, Modelling and Simulation, Financial Risk Management)
MSMAF01C02/MSMAT01C02 : LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any five questions. Each question carries 4 marks.

- 1. Define linear transformation. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (1 + x, y). Is T linear? Justify.
- 2. Find the range and rank of the identity transformation on R².
- Define dual space. If V is a vector space of dimension n, find the dimension of the dual space V*.
- Let T be a linear operator on R² defined by T(x, y) = (-y, x). Find the characteristic values of T.
- 5. State Cyclic decomposition theorem.
- 6. Let V be an inner product space. Prove that $|(\alpha/\beta)| \le ||\alpha|| ||\beta||$ for any vectors $\alpha, \beta \in V$. (5×4=20)

PART - B

Answer any three questions. Each question carries 7 marks.

7. Let V, W be vector spaces over the field F and L(V, W) be the set of all linear transformations from V into W. Prove that L(V, W) is a vector space over F with respect to the addition and scalar multiplication defined by
(T + U) (α) = Tα + Uα and (cT) (α) = c(Tα), where T, U ∈ L (V, W) and c ∈ F.

P.T.O.

K24P 3937

- 8. Let T be the linear operator on R³ defined by $T(x_1, x_2, x_3) = (3x_1, x_1 x_2, 2x_1 + x_2 + x_3).$ Is T invertible? If so find T⁻¹.
- 9. Let V be a finite dimensional vector space over the field F. For each α in V define L_{α} (f) = f(α), f in V*. Prove that the mapping $\alpha \to L_{\alpha}$ is an isomorphism of V onto V**.
- 10. Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial of T has the form $p = (x c_1) \dots (x c_k)$, where c_1, \dots, c_k are distinct elements of F.
- 11. Let T be a linear operator on a finite dimensional vector space V over the field F. Suppose that a minimal polynomial for T decomposes over F into a product of linear functionals. Then prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that

i) T = D + N, ii) DN = ND.

Also show that the diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T. (3×7=21)

PART - C

Answer any three questions. Each question carries 13 marks.

- 12. a) Let V be an n-dimensional vector space over the field F, and let W be an m-dimensional vector space over F. Prove that the space L(V, W) is finite dimensional and has dimension mn.
 - b) Prove that every n-dimensional vector space over the field F is isomorphic to the space Fⁿ.
- 13. Let $\mathscr{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be basis for C^3 defined by $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1), \alpha_3 = (2, 2, 0)$. Find the dual basis of \mathscr{B} .
- 14. Let T be a linear operator on R^3 which is represented in the standard ordered basis by the matrix $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$. Prove that T is diagonalizable by exhibiting
 - a basis for R3, each vector of which is a characteristic vector of T.
- Let T be a linear operator on a finite dimensional vector space V. If f is the characteristic polynomial for T, prove that f(T) = 0.
- 16. State and prove Gram Schmidt orthogonalization process.

(3×13=39)