

Unit - III

- 13. a) Let C be a connected oriented plane curve and let β: I → C be a unit speed global parametrization of C. Then prove that β is either one to one or periodic. Also prove that β is periodic if and only if C is compact.
 - b) Let $\alpha: I \to \mathbb{R}^{n+1}$ be a parametrized curve and if $\beta: I \to \mathbb{R}^{n+1}$ is a reparametrization of α then prove that $I(\alpha) = I(\beta)$.
- 14. a) Find the principal curvatures at p and the principal curvature directions at p of the hyperboloid $-x_1^2 + x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 at p = (0, 0, 1).
 - b) Find the Gaussian curvature of the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, a, b, c all $\neq 0$ oriented by its outward normal.
- 15. a) State and prove the inverse function theorem for n-surfaces.
 - b) Let S be an n-surface in \mathbb{R}^{n+1} and let $f:S\to\mathbb{R}^k$. Then prove that f is smooth if and only if $f\circ \phi:U\to\mathbb{R}^k$ is smooth for each local parametrization $\phi:U\to S$.