

Reg. No.:

Name :

IV Semester M.Sc. Degree (C.B.S.S. - Supple./Imp.) Examination, April 2025 (2021 and 2022 Admissions) MATHEMATICS

MAT4C16 : Differential Geometry

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks :

 $(4 \times 4 = 16)$

- 1. Show that the graph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Define gradient vector field. Find the gradient vector field of the function $f(x_1, x_2) = x_1^2 + 2x_2^2, x_1, x_2 \in \mathbb{R}$.
- Show that SL(2) is a 3-surface in R⁴.
- 4. Define differential 1-form. Give an example.
- 5. Find the length of the parametrized curve $\alpha: [0, 2] \to \mathbb{R}^2$ defined by $\alpha(t) = (t^2, t^3)$.
- Obtain the torus as a parametrized surface in R³.

PART - B

Answer any four questions without omitting any Unit. Each question carries $(4 \times 16 = 64)$ 16 marks:

Unit - I

- 7. a) Prove that a connected n-surface has exactly 2 orientations.
 - b) Let U be an open set in \mathbb{R}^{n+1} and let $f:U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let c = f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $|\nabla f(p)|$.

P.T.O.

K25P 1136

- 8. a) State and prove Lagrange's multiplier theorem.
 - Show that the surface of revolution is a 2-surface.
 - c) Show that the maximum and minimum of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$, $a, b, c \in \mathbb{R}$ on the unit circle $x_1^2 + x_2^2 = 1$ are the eigenvalues of the matrix a b b c
- 9. a) Let \mathbb{X} be the vector field defined by $\mathbb{X}(x_1, x_2) = (x_1, x_2, -x_2, x_1)$. Find the integral curve of X passing through (1, 0).
 - b) Let S be an n-surface in Rn-1, let X be a smooth tangent vector field on S and let p ∈ S. Then prove that there exist an open interval I containing 0 and a parametrized curve $\alpha: I \to S$ such that (i) α (0) = p, (ii) $\dot{\alpha}$ (t) = \mathbb{X} (α (t)), (iii) If $\beta: I \to U$ is any other integral curve of \mathbb{X} with $\beta(0) = p$ then $\overline{I} \subset I$ and $\beta(t) = \alpha(t) \forall t \in \hat{I}$.

Unit - II

- 10. a) Sketch the spherical image of the hyperbola $x_1^2 x_2^2 = 4$, $x_1 > 0$.
 - b) Show that for each pair of orthogonal unit vectors {e,, e,} in R3, $\alpha(t) = \cos ate_1 + \sin ate_2$ is a geodesic on the unit sphere.
 - c) Compute $\nabla_{v} f$, given that $f(x_1, x_2) = 2x_1^2 + 3x_2^2$ at v = (1, 0, 2, 1).
- 11. a) Let S be an n-surface in \mathbb{R}^3 , let p, $q \in S$ and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot product.
- b) Let S be a 2-surface in \mathbb{R}^3 and let $\alpha: I \to S$ be a geodesic on S with $\dot{\alpha} \neq 0$. Then prove that a vector field X tangent to S along α is parallel along α if
- and only if both norm of $\mathbb X$ and the angle between $\mathbb X$ and $\dot{\alpha}$ are constants along α. Let S be a compact connected oriented n-surface in ℝⁿ⁻¹ exhibited as a level

set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n-1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then

prove that the Gauss map maps S onto the unit sphere Sn.