Reg. No.:

Name:.....

I Semester M.Sc. Degree (C.B.C.S.S. – OBE – Reg./Supple./Imp.)

Examination, October 2024

(2023 Admission Onwards)

PHYSICS/PHYSICS WITH COMPUTATIONAL AND NANO SCIENCE SPECIALIZATION

MSPHN01C04/MSPHY01C04: Electronics

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 5, each one carries 3 marks.

- 1. Outline block diagram representation of a typical OPAMP.
- 2. What are the differences between synchronous and asynchronous counters ?
- 3. What is the potential timing problem in flip-flop circuits?
- 4. What are the different classifications of microprocessors ?
- Explain the oscillator principles.
- Summarize the different comparator characteristics.

(5×3=15)

P.T.O.

K24P 3919

SECTION - B

Answer any 3, each one carries 6 marks.

7. $R_{c} = 2 \text{ mV}$ R_{c} Q_{1} Q_{2} R_{E}

 $\beta_1 = \beta_2 = 75$

In the circuit shown, if r_i = 20 k Ω , R_C = 72 k Ω and R_E = 48 k Ω , calculate

- a) Single-ended output voltage
- b) Common mode gain.
- Build a J-K flipflop by using an S-R flipflop.
- Categorize different flag registers.
- 10. Design a synchronous 3-bit Up-down counter using J-K FFs.
- 11. Make use of op-amp 1458/353 to design a triangular wave generator. (3x6=18)

SECTION - C

Answer any 3, each one carries 9 marks.

- 12. Organize and explain the different functional units of the 8085 microprocessor.
- 13. Compare and contrast R-2R ladder type DAC and weighted resistor type DAC.
- List and appraise different types of shift registers.
- Justify how the inverting, noninverting and differential configurations of OPAMP are useful in applications like summing, scaling and averaging amplifiers.
 Distinguish and explain first-order low-pass and high-pass Butterworth filters.
- 16. Distinguish and explain instructed low page and may page (3×9=27)