Reg.	No.	:	 	• •

Name :

I Semester M.Sc. Degree (C.B.C.S.S. – OBE – Reg./Supple./Imp.)
Examination, October 2024
(2023 Admission Onwards)

CHEMISTRY/CHEMISTRY WITH DRUG CHEMISTRY SPECIALIZATION
MSCHD01C04/MSCHE01C04: Physical Chemistry – 1

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any five questions. Short answer questions. Each carries three marks.

- 1. State the third law of thermodynamics and explain its significance.
- 2. Explain the influence of temperature and pressure on ion conductance in electrolyte solutions.
- 3. Explain liquid junction potential. How is it eliminated?
- 4. Differentiate deposition, dissolution and decomposition potentials.
- What are the differences between Electrostatic Double-Layer Capacitors (EDLC) and pseudocapacitors?
- What is passivity of metals? Explain its importance.

(5×3=15)

SECTION - B

Answer any three questions. Short answer questions. Each question carries six marks.

- Explain the Seebeck effect, Peltier effect and Thomson effect in thermoelectricity.
- Construct the phase diagram of the water system and discuss it.
- Derive the equation for the Debye-Huckel limiting law. Why it is called a limiting law?
- Describe the principle of polarography. Derive an equation for halfwave potential.
- 11. Explain the principle of cyclic voltammetry. Why CV has been recognised as the most versatile analytical technique? (3x6=18)

P.T.O.

K24P 3882

SECTION - C

Answer any three questions. Essay type questions. Each question carries nine marks.

- Explain the physical significance of partial molar quantities. Derive the expression
 of variation of chemical potential with pressure and temperature.
- 13. Derive the Debye-Hückel-Onsager equation for ion conductance and explain its relevance to electrolyte solutions.14. Explain hydrogen and oxygen overvoltage. Discuss the various theories of
- overvoltage.

 15. Explain in detail the working principle, reactions and applications of lithium-ion
- Describe in detail the thermodynamics of corrosion, measurement of corrosion rate and corrosion prevention by cathodic protection. (3×9=27)