Reg.	No.	:	
			*

I Semester M.Sc. Degree (C.B.C.S.S. – OBE – Reg./Supple./Imp.)

Examination, October 2024
(2023 Admission Onwards)

(2023 Admission Onwards)
CHEMISTRY/CHEMISTRY WITH DRUG CHEMISTRY SPECIALIZATION

MSCHD01C01/MSCHE01C01: Theoretical Chemistry – 1

Time: 3 Hours

Max. Marks: 60

SECTION - A

(Answer any five questions. Short answer questions. Each question carries three marks.)

- What is meant by Compton effect? Calculate the Compton shift when scattering angle is equal to 90°.
- 2. Explain eigen values and eigen functions with suitable examples.
- 3. Explain (i) spherical harmonics and (ii) polar diagrams.
- 4. Explain the concept of degeneracy with respect to particle in a cubical box problem. What will be the degeneracy of the energy level (14h²/8ma²) of a cubical box with edge length 'a'?
- State and explain variation theorem.
- Derive the ground state spectroscopic term symbol for O₂ molecule. (5×3=15)

SECTION - B

(Answer any three questions. Short answer questions. Each question carries six marks.)

- Explain the Davisson-Germer experiment as a proof of wave-particle duality of matter.
- 8. What angular momentum operators? Discuss their commuting property.

P.T.O.

K24P 3879

- Briefly discuss the Self Consistent Field theory.
- Differentiate the basis sets STO and GTO.
- Sketch the MO diagrams of heteronuclear diatomic molecules, NO and HF.
 Calculate their bond orders.
 (3x6=18)

SECTION - C

(Answer any three questions. Essay type questions. Each question carries nine marks.)

- 12. Discuss the postulates of quantum mechanics.
- Give the Schrodinger wave equation for hydrogen like systems. Separate the variables and obtain the complete solution of 0 (theta) equation.
- 14. Discuss the quantum mechanical treatment of non-planar rigid rotator.
- 15. Explain the perturbation method. Apply first-order time-independent perturbation method to particle in 1-D box with slanted bottom.
 16. Apply the Huckel Molecular Orbital (HMO) theory to benzene. (3×9=

(3×9=27)