

Reg. No.:....

Name :

I Semester M.Sc. Degree (C.B.C.S.S. – O.B.E. – Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards)

CHEMISTRY/CHEMISTRY WITH DRUG CHEMISTRY SPECIALIZATION MSCHD01C03/MSCHE01C03 : Organic Chemistry – 1

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any five questions. Short answer questions. Each carries three marks.

- Differentiate singlet and triplet carbenes.
- 2. Explain Sommelet-Hauser rearrangement.
- 3. What are non-classical carbocations?
- 4. State and explain Hofmann elimination.
- 5. Discuss cine substitution.
- 6. What is photo Fries rearrangement?

 $(5 \times 3 = 15)$

SECTION - B

Answer any three questions. Short answer questions. Each question carries six marks.

7. Propose the mechanisms of the following transformations:

P.T.O.

K24P 3881

- 8. Discuss the aromaticity of annulenes. Why cyclooctatetraene (C₈H₈) prefers a tub-shaped conformation other than planar conformation?
- 9. Illustrate the arenium ion mechanism of aromatic electrophilic substitution.
- 10. Explain Norrish type-I and Norrish type-II cleavages with appropriate examples.
- Create the Jablonski diagram to explain radiative and non-radiative processes undergone by excited molecules. (3x6=18)

SECTION - C

Answer any three questions. Essay type questions. Each question carries nine marks.

- 12. Briefly explain the mechanistic steps involved in the following :
 - i) Demjanov rearrangement.
 - ii) Favorskii rearrangement.
 - iii) Baeyer-Villiger oxidation.
- Compare the mechanisms and stereochemical aspects of E1, E2 and E1cB eliminations.
- 14. Explain the mechanisms of the following reactions using appropriate examples :
 - i) SN2 reaction
 - ii) SNi reaction
 - iii) SE1 reaction
- Compare and contrast SNAr mechanism and benzyne mechanism of aromatic nucleophilic substitution.
- 16. Illustrate the following photochemical reactions with suitable examples :
 - i) Paterno-Buchi reaction
 - ii) Hofmann-Loffler-Freytag reaction
 - iii) Barton reaction.

(3×9=27)