

Reg.	No.	:	

Name :

IV Semester M.Sc. Degree (C.B.C.S.S. - OBE-Regular) Examination, April 2025 (2023 Admission) CHEMISTRY

MSCHE04E01: Interdisciplinary Topics and Instrumentation Techniques

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 5. Each question carries 3 marks.

- 1. Define supramolecular chemistry and mention its significance.
- Explain host-guest chemistry.
- Explain any three principles of green chemistry.
- Explain the role of phase transfer catalysts in green synthesis.
- 5. Define nanostructures and provide two examples.
- Mention any three applications of nanotechnology in the biomedical field. $(5 \times 3 = 15)$

SECTION - B

Answer any 3. Each question carries 6 marks.

- 7. Discuss different types of molecular forces involved in supramolecular chemistry.
- 8. Compare Aldol condensation in classical vs. green chemistry approaches.
- 9. Explain lithography and self-assembly in nanostructure formation.
- 10. Describe the principles and applications of Nephelometry and Turbidimetry.
- 11. Explain the significance of Mossbauer spectroscopy in studying oxidation $(3 \times 6 = 18)$ states of iron.

P.T.O.

K25P 0968

SECTION - C

Answer any 3. Each question carries 9 marks.

- 12. Discuss in detail multiple recognition mechanisms and their applications.
- 13. Explain microwave organic synthesis and its advantages in green chemistry.
- 14. Discuss various nanostructures like tubes, fibres and bricks and their applications. 15. Explain the basic principles of Electron Spin Resonance (ESR) spectroscopy
- and its applications. Describe the Mossbauer effect and its relevance to chemical isomer shifts. $(3 \times 9 = 27)$

