Reg. No. :

Name :

VI Semester B.Sc. Mathematics (Honours) Degree (C.B.C.S.S. – OBE-Regular/Supplementary/Improvement) Examination, April 2025 (2021 and 2022 Admissions) DISCIPLINE SPECIFIC ELECTIVE COURSE

6B27C BMH : Fuzzy Mathematics

Time: 3 Hours

Max. Marks: 60

- Answer any 4 out of 5 questions. Each question carries 1 mark. 1) Define a membership function.
- $(4 \times 1 = 4)$
- Define a normal fuzzy set.
- 3) Find the α cuts with α = 0.2 of the fuzzy set A = 0.2/x₁ + 0.4/x₂ + 0.6/x₃ + $0.8/x_4 + 1/x_5$ Define extension principle.
- Find [2, 5] + [1, 3].

function of Ā and A∪B.

- II. Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12) Define interval valued fuzzy set with an example.

8) Determine the mathematical formulas and graphs of the membership grade

- 7) Compute the scalar cardinalities of A = 1/x + 1/y + 1/z.
- State the first decomposition theorem.
- State Characterization theorem of t norms. 11) Write the Pseudo inverse of the increasing generator $g_1(a) = a^p(p > 0)$ for any $a \in [0,1]$.
- 12) Prove that the triples (min, max,c) and (imin, Umax, c) are dual with respect to the fuzzy complement c. 13) Prove that A.(B + C) ⊆ A.B + A.C.
- 14) Find [3, 4]. [2, 2].

P.T.O.

K25U 0326

III. Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8x4=32)

15) Prove that a fuzzy set A on R is convex if and only if

-2-

- $A(\lambda x_1 + (1 \lambda) x_2) \ge \min[A(x_1), A(x_2)] \text{ for all } x_1, x_2 \in \mathbb{R} \text{ and all } \lambda \in [0, 1],$ where minimum denotes the minimum operator. 16) For any pair of fuzzy subset defined on a finite universal set X, the degree of subsethood,
- $S(A,B) = \frac{1}{|A|}(|A| \sum_{x \in X} max[0,A(x) B(x)]).$ Then prove that

$$S(A, B) = \frac{|A \cap B|}{|A|}.$$
17) For any $A \in F(X)$, prove that $\alpha_A = \bigcap_{\beta < \alpha} \beta A = \bigcap_{\beta < \alpha} \beta + A$.
18) State and prove the second decomposition theorem.

- 19) If c is a continuous fuzzy complement, then prove that c has a unique equilibrium.
- 20) Write the axiomatic skeleton for fuzzy intersection/t-norms.
- 21) Let i_{ω} denote the class of Yager t norms defined by
- $i_{_\omega}(a,b)=1-min(1,[(1-a)^\omega+(1-b)^\omega]^\omega)(\omega>0)$. Then prove that $i_{min}(a,b) \le i_{\omega}(a,b) \le min(a,b)$ for all $a,b \in [0,1]$.
- 23) For $\alpha \to 0$, prove that the function $h_{\alpha}(a_1, a_2, ..., a_n) = \left(\frac{a_1^2 + a_2^2 + ... + a_n^2}{n}\right)^{\alpha}$ converges to the geometric mean $(a_1 a_2 ... a_n)^n$

22) Prove that the standard fuzzy union is the only idempotent t - conorm.

24) Explain linguistic variables with an example. 25) Let $A \in F(R)$ and A is a fuzzy number. Then prove that there exist a closed interval [a,b] $\neq \phi$ such that

$$A(x) = \begin{cases} I(x) & \text{for } x \in (-\infty, a) \\ r(x) & \text{for } x \in (b, \infty), \end{cases}$$
 where I is a function from $(-\infty, a)$ to $[0,1]$ that is monotonic increasing and continuous from the right and such that $I(x) = 0$ for $x \in (-\infty, \omega_1)$.

1 for $x \in [a,b]$

$A(x) = \begin{cases} \frac{x+2}{2} & \text{for } -2 < x \le 0 \\ \frac{2-x}{2} & \text{for } 0 < x < 2 \quad \text{and } B(x) = \begin{cases} \frac{x-2}{2} & \text{for } 2 < x \le 4 \\ \frac{6-x}{2} & \text{for } 0 < x \le 6 \end{cases}$ 0 & otherwise

K25U 0326

IV. Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12)

-3-

26) Let A and B be two fuzzy numbers whose membership functions are given by

28) Let $f: X \to Y$ be an arbitrary function. Then for any $A \in F(X)$ and all $\alpha \in [0,1]$. prove that

Explain the characteristics and significance of the paradigm shift.

Then calculate the fuzzy numbers A + B and A - B.

29) For all $a, b \in [0,1]$ prove that max $(a,b) \le U(a,b) \le U_{max}(a,b)$.

30) Consider two triangle shape fuzzy numbers A and B defined as follows:

$$A(x) = \begin{cases} 0 & \text{; } x < -1 \text{ and } x > 3 \\ \frac{x+1}{2} & \text{; } -1 < x \le 1 \\ \frac{3-x}{2} & \text{; } 1 < x \le 3 \end{cases} \quad \text{and } B(x) = \begin{cases} 0 & \text{; } x \le 1 \text{ and } x < 3 \\ \frac{x-1}{2} & \text{; } 1 < x \le 3 \end{cases}$$

i) $\alpha + [f(A)] = f(\alpha + A)$. ii) $\alpha[f(A)] \supset f(\alpha A)$.

- Then find $^{\alpha}A$ and $^{\alpha}B$. Hence find,
- a) $\alpha(A+B)$ b) $\alpha(A - B)$
 - c) α(A.B) d) $\alpha(A/B)$