Reg. No.:....

Sixth Semester B.Sc. Mathematics (Honours) Degree (CBCSS-Supplementary) Examination, April 2025 (2019 - 2020 Admissions) Core Course

BHM604A: DISCRETE FOURIER ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$

- 1. Compute the Discrete Fourier Transform (DFT) of the sequence {1, 0, -1, 0}. Define circulant matrix with an example.
- 3. What is the conjugate reflection of an element in $l^2(Z_N)$?
- 4. Define convolution of two sequences in $l^2(Z)$.
- 5. How is the downsampling operator defined for a sequence in $l^2(Z)$, and what
- is its effect on the sequence? SECTION - B

Answer any 6 out of 9 questions. Each question carries 2 marks.

Compute the Discrete Fourier Transform (DFT) of {1, −1, 1, −1}.

 $(6 \times 2 = 12)$

- 7. If X(k) is the DFT of a sequence x(n), express the DFT of x(n-1) in terms of X(k).
- 8. Verify if the transformation T(x(n)) = x(n) + x(n-1) satisfies linearity. 9. Suppose $z, w \in l^2(Z_N)$. For any $k \in Z$, show that $z * w(k) = \langle z, R_k w \rangle$.
- 10. Suppose $z \in l^2(Z_N)$. Prove that $(U(\overline{z}))(n) = \overline{z}(n)$ for all n.

P.T.O.

eigenvalues of T.

K25U 0331

11. Verify if the sequence $x(n) = \{1, 1/2, 1/3, ...\}$ belongs to $l^2(Z)$.

- 12. Suppose $\sum_{n \in \mathbb{Z}} w(n)$ be a series of complex numbers which converges
- absolutely. Prove that the series $\sum_{n \in Z} w(n)$ converges. 13. Find the Fourier coefficients of the function $f: [-\pi, \pi) \to R$ defined as :
- $f(\theta) = \begin{cases} 1, & \text{if } 0 \le \theta < \pi \\ 0, & \text{if } -\pi \le \theta < 0 \end{cases}$ 14. Construct the first-stage wavelet on Z using the filter $h = \{1, -1\}$. SECTION - C
- Answer any 8 out of 12 questions. Each question carries 4 marks.

15. Prove that the set $\{E_0, E_1, ..., E_{N-1}\}$ an orthonormal basis for $l^2(Z_N)$, where the functions E_k are defined as $E_m(n) = \frac{1}{\sqrt{N}} e^{i\frac{2\pi mn}{N}}$, m, n = 0, 1, ..., N-1?

 $(8 \times 4 = 32)$

- 16. Define $z \in l^2(Z_{512})$ by $z(n) = 3\sin\left(\frac{2\pi7n}{512}\right) 4\cos\left(\frac{2\pi8n}{512}\right)$. Find \hat{z} . 17. Define the operator $T: l^2(Z_N) \rightarrow l^2(Z_N)$ by (T(z))(n) = z(n+1) - z(n). Find all
- 18. Let $z, w \in l^2(Z_N)$. Then, for any $k, j \in Z$, prove that $\langle R_k z, R_j w \rangle = \langle z, R_{i-k} w \rangle = \langle R_{k-i} z, w \rangle$ 19. Suppose N = 2M for some M \in N. Define u, $v \in l^2(Z_N)$ by
- $\left\{R_{2k}v\right\}_{k=0}^{M-1} \cup \left\{R_{2k}u\right\}_{k=0}^{M-1} \text{ forms an orthonormal basis for } \ell^2(Z_N).$ 20. Let $z, w \in \ell^2(Z_N)$. Then prove that the conjugate reflection of the convolution of z and w satisfies : $(z \star w)(k) = \overline{z}(k) \star \widetilde{w}(k)$. 21. Prove that the Dirac delta function $\delta(n)$ belongs to $l^2(Z)$ and compute its Fourier transform.

 $u = \frac{1}{\sqrt{2}} (1, 1, 0, 0, ..., 0), v = \frac{1}{\sqrt{2}} (1, -1, 0, 0, ..., 0)$. Then prove that the set

that w = 0.

wavelet basis for $l^2(Z_N)$.

but $f \notin L^2([-\pi, \pi))$.

24. Suppose $z \in l^2(Z)$ and $w \in l^1(Z)$. Show that $z * w \in l^2(Z)$ and prove the inequality

 $(2 \times 6 = 12)$

K25U 0331

 $\|z * w\|_{2} \le \|w\|_{1} \|z\|_{2}$ 25. Suppose $z \in l^2(Z)$. Prove that $(\widehat{U(z)})(\theta) = \hat{z}(2\theta)$ for all θ .

26. Suppose $w \in l^2(Z)$. If there exist k, $j \in Z$ with $k \neq j$ such that $R_k w = R_j w$, prove

-3-

22. Suppose $\{z_k\}_{k=M}^{\infty}$ is a Cauchy sequence in $l^2(Z)$. Prove that for each $n \in Z$,

23. Define the function $f(\theta) = \frac{1}{\sqrt{|\theta|}}$, for $\theta \neq 0$ and f(0) = 0. Show that $f \in L^1([-\pi, \pi))$

the sequence $\left\{z_{k}(n)\right\}_{k=M}^{\infty}$ is a Cauchy sequence in C.

SECTION - D

Answer any 2 out of 4 questions. Each question carries 6 marks.

- 27. Let $T: l^2(Z_N) \to l^2(Z_N)$ be a translation-invariant linear transformation. Then prove that each element of the Fourier basis F is an eigenvector of T. In particular, T is diagonalizable.
- 28. Suppose $M \in N$, N = 2M and let $u \in l^2(Z_N)$ be such that the set $\{R_{2k}u\}_{k=0}^{M-1}$ is an orthonormal set with M elements. Define $v \in \ell^2(Z_N)$ by $v(k) = (-1)^{k-1} \overline{u(1-k)}$ for all k. Then prove that the set $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ forms a first-stage
- linear transformation. Then prove that for each m \in Z, there exists $\lambda_m \in$ C such that $T(e^{im\theta}) = \lambda_m e^{im\theta}$. Prove that the system matrix A(θ) associated with the sequences u and v is unitary for all θ , where $u \in l^1(Z)$ and the set $\{R_{2k}u\}_{k \in Z}$ is orthonormal in $l^2(Z)$.

The sequence $v \in l^1(Z)$ is defined by $v(k) = (-1)^{k-1} \overline{u(1-k)}$.

29. Suppose $T:L^2([-\pi,\pi)) \to L^2([-\pi,\pi))$ is a bounded, translation-invariant