Reg. No.:

Name :

III Semester M.Sc. Degree (C.B.S.S.-Supple./Imp.) Examination, October 2024 (2021 and 2022 Admissions) PHYSICS

PHY3C10: Quantum Mechanics - II

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either A or B).

1. A) Briefly describe time dependent perturbation theory. Applying this theory, evaluate the transition probability for a constant perturbation.

OR

- B) Explain the role of symmetry of wave functions of identical particles using the singlet and triplet states of Helium atom.
- 2. A) Evaluate the differential scattering cross section in the first Born approximation for a Coulomb potential V (r) = $\frac{Z_1Z_2e^2}{}$ where Z_1e and Z_2e are the charges of the projectile and target particles respectively.

OR

B) Obtain the free particle solution of Dirac's equation. What is Dirac spinor?

 $(2 \times 12 = 24)$

SECTION - B

Answer any four. (1 mark for Part A, 3 marks for Part B, 5 marks for Part C.)

- 3. A) What is electric dipole approximation?
 - B) Mention the selection rules for electric dipole transitions.
 - C) State which of the following transitions are allowed and give reasons.

i) $1s \rightarrow 2s$

ii) $1s \rightarrow 2p$

iii) 2p → 3d

iv) $3s \rightarrow 5d$

P.T.O.

K24P 3349

- 4. A) Distinguish between centre of mass frame and lab frame. How differential scattering cross section and total scattering cross section vary in them ?
 - B) What is the significance of phase shift in partial wave analysis of elastic scattering?
 - C) Consider the elastic scattering of 50 MeV neutrons from a nucleus. Te phase shifts measured in the experiment are $\delta_0 = 95^\circ$, $\delta_1 = 72^\circ$, $\delta_2 = 60^\circ$, δ_3 = 35°, δ_4 = 18°, δ_5 = 5° and all other phase shifts are negligible. Calculate the total scattering cross section. (Given $M_nc^2 = 939.57 \text{ MeV}$, $\hbar c = 197.33$ MeV fm).
- 5. A) What are identical particles?
 - B) What is particle exchange operator? Mention its properties.
 - C) Show that $\hat{P}_{ij}\hat{P}_{ik}=\hat{P}_{jk}\hat{P}_{ji}=\hat{P}_{ik}\hat{P}_{jk}$ for a three particle system.
- 6. A) If $\sigma' = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}$ show that $\sigma'^2_x = \sigma'^2_y = \sigma'^2_z = 1$.
 - B) Show that $\left[\sigma'_{x}, \alpha_{x}\right] = 0$ and $\left[\sigma'_{x}, \alpha_{y}\right] = 2i\alpha_{z}$.
 - C) Check whether $\sigma' = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}$ is a constant of motion. (Given σ is the Pauli matrix and $\alpha_{\rm x}$, $\alpha_{\rm y}$, $\alpha_{\rm z}$ are the Dirac matrices.)
- 7. A) Write down Dirac equation.
 - B) Obtain the covariant form of Dirac equation.
 - C) Show that the angular momentum associated with the orbital motion of a particle is not a constant of motion.
- 8. A) What are the conditions for completeness and physical reality as per Einstein's concept? B) Outline Bohr's explanation of EPR paradox.

 - C) Describe Bell's inequalities and Bell's theorem.

 $(4 \times 9 = 36)$