Reg. No.	******************************
Name ·	

III Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) PHYSICS

PHY 3C12 - Nuclear and Particle Physics

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either a or b).

1. a) What is nuclear binding energy and how does the semi-empirical mass formula explain it? Also, how can we find the Z value for the most stable nucleus using this formula?

- b) Derive the expression for the ground state deuteron wave function in a two-body problem, considering the deuteron as a nucleus composed of a proton and a neutron.
- 2. a) What is the shell model in nuclear physics and how does it account for nuclear magic numbers and the filling of nuclear energy levels? OR
 - b) What is the of beta decay and how does the Fermi theory explain it? $(2\times12=24)$

SECTION - B

(1 mark for Part (a), 3 marks for Part (b), 5 marks for Part (c)). Answer any four.

- a) Explain nuclear radius.
 - b) Define angular momentum and parity. How are they used to describe nuclear states?
 - c) A nucleus with A = 235, splits into two nuclei whose mass numbers are in the ratio 2:1. Find the radii of the new nuclei.

P.T.O.

K23P 1424

- 4. a) What are the characteristic features of the nuclear force?
 - Explain the concept of compound nucleus reactions.
 - c) A thin sheet of Co⁵⁹, 0.04 cm thick is irradiated with a neutron beam of flux density 1012 neutrons/cm2/sec for a period of 3 hours. If the cross-section for neutron capture by Co⁵⁹ is 30 barns, calculate the number of nuclei of isotope of Co⁶⁰ produced at the end of the radiation period per cm² and the initial beta activity of the sample. Given half life of Co⁶⁰ is 5.2 years and
- a) Write down different types of Quarks.
 - b) Describe the quark model.
 - c) Say which of the following reactions are possible?

i)
$$\pi^+ + n^0 \rightarrow \lambda^0 + k^+$$

ii)
$$\pi^+ + n^0 \rightarrow k^0 + k^+$$

iii)
$$\overline{V}_e + p^+ \rightarrow n^0 + \mu^+$$

iv)
$$\bar{v}_e + p^+ \rightarrow n^0 + e^+$$

v) $\pi^+ + n^0 \rightarrow \pi^- + p^+$

- 6. a) Why nuclear fission happens?
 - b) Explain characteristics of nuclear fission reaction.
 - c) The half lives of two radioactive substance A and B are respectively 1 hour and 2 hours. If initially the number of nuclei of both substances are the same, compare their rate of disintegration after two hours.
- 7. a) What is magnetic dipole moment of nuclei ?
 - b) Explain Spin-Orbit Potential regarding shell model.
 - c) Predict the parity, quadrupole moment of the ground state of O 87 S 33.
- 8. a) What is Isospin and Strangeness quantum number?
 - b) Discuss the conservation laws that govern nuclear reactions.
 - c) Determine the quark content of λ^0 , k^+ , k^0 , $\overline{k^0}$, k^- .

 $(4 \times 9 = 36)$