

Reg. No.:

Name :

First Semester M.Sc. Degree (CBSS - Supple. (One Time Mercy Chance)/Imp.) Examination, October 2023 (2014 to 2022 Admissions)

PHYSICS

PHY1C01: Mathematical Physics - I

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either a or b), each question carries 12 marks.

1. a) Discuss the properties of Pauli matrices. Find the eigenvalues and eigenvectors of Pauli matrices.

- b) Show that the eigenvalues of a Hermitian matrix are real and the eigenvectors corresponding to different eigenvalues are orthogonal. Show that the eigenvalues of a unitary matrix is unimodular.
- 2. a) What is meant by an analytic function? Obtain the necessary condition for analyticity. Show that the real and imaginary part of a complex function satisfies Laplace equation.

b) Obtain the orthogonality relation of Legendre polynomials. Show that $\int_{1}^{1} x p_{n}(x) p_{n-1}(x) dx = \frac{2n}{4n^{2} - 1}$

SECTION - B

Answer any four questions, part a carries 1 mark, part b carries 3 marks and part c carries 5 marks.

- 3. a) A and B are two noncommuting Hermitian matrices. AB BA = iC. Prove that C is Hermitian.
 - b) Two matrices A and B are each Hermitian. Find the necessary and sufficient condition for their product AB to be Hermitian.
 - c) Show that det $e^A = e^{trA}$, where A is an $n \times n$ matrix.

P.T.O.

K23P 3281

- 4. a) Solve Laplace equation $\nabla^2 \psi = 0$, in cylindrical coordinates for $\psi = \psi(\rho)$.
 - b) Obtain the divergence of a vector field in cylindrical polar coordinates.
 - c) Obtain the curl of a vector field in spherical polar coordinate system.
- 5. a) What is meant by spectral decomposition of a matrix? b) Evaluate $e^{i\sigma_2\theta}$, where σ_2 is the second Pauli matrix.
 - c) The eigenvectors of a matrix are $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ with eigenvalues {1/2, 2, 1} respectively. Find the matrix.
- a) Define metric tensor.
 - b) Explain what is meant by the rank of a tensor. Discuss the outer product and inner product of tensors.
 - Obtain the components metric tensor g_{ij} and g^{ij} for a sphere of unit radius, S².
- 7. a) Write down the generating function for Bessel function.
 - b) For integral n, show that $J_{-n}(x) = (-1)^n J_n(x)$.
 - c) Show that $\frac{d}{dx} [x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$.
- 8. a) Check the analyticity of the function $f(z) = z^2$.
 - b) Evaluate the real part of (i)ⁱ.
 - c) Evaluate the integral $\oint_c \frac{dz}{z^2+z}$, where c is circle defined by with radius |z|>1.