Reg. No.	
Name :	***************************************

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) PHYSICS

PHY 4E06 : Optoelectronics

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either a or b).

- a) i) What is Fermi energy? Arrive an expression for Fermi level in an intrinsic semiconductor.
 - ii) Sketch and explain a degenerate n-type semiconductor.

OR

- b) i) Give an account of avalanche photodiode.
 - ii) Deduce an expression for photoconductive gain of a photoconductor.
- 2. a) i) Explain the device structure of LED.
 - ii) Briefly explain the LED characteristics.

OR

- b) Briefly explain the following non-linear optical process:
 - Second harmonic generation
 - ii) Sum and difference frequency generation
 - iii) Optical parametric oscillation.

(2×12=24)

P.T.O.

K22P 3326

SECTION - 8

Answer any four.

(1 mark for part a, 3 marks for part b, 5 marks for part c)

- 3. a) Write and explain the diode equation.
 - b) State and explain the law of mass action.
 - c) What is the conductivity of an n-type Si crystal that has been doped uniformly with 10¹⁶ cm⁻³ phosphorous (P) atoms (donors) if the drift mobility of electrons is about 1350 cm²V⁻¹s⁻¹?
- a) What is a PIN photodiode?
 - b) Give an account of LEDs for optical fiber communications.
 - c) A Si APD has a QE of 75% at 830 nm in the absence of multiplication, that is M = 1. The APD is biased to operate with a multiplication of 100, if the incident optical power is 15 nW, what is the photocurrent?
- a) What is meant by passive mode locking?
 - b) Write a short note on noise in photodetectors.
 - c) Compute the mode-locked pulse width Δt_p and the separation between the pulses Δt_{sep} for a Helium-neon laser operating at 632.8 nm with a mirror cavity spacing of d = 0.5 m. (gain bandwidth \pm 1.5 \times 10° Hz)
- a) What is Ramo's theorem ?
 - b) Briefly explain the solar energy spectrum.
 - c) With a sketch, explain the principle and operation of the solar cell.
- 7. a) What is meant by a blaxial crystal 7
 - b) Explain the birefringence of calcite crystals.
 - c) What should be the thickness of a quarter wave plate of calcite for a wavelength 589.3 nm? Given the ordinary and extraordinary refractive indices are 1.652 and 1.488 respectively.
- 8. a) What is meant by two-photon absorption?
 - b) Explain the methods of achieving phase matching in birefringent materials.
 - Write a short note on non-linear optical materials.

(4×9=36)