Reg. No.:	***************************************
Name :	

III Semester M.Sc. Degree (CBSS - Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) **PHYSICS**

PHY 3C11 : Solid State Physics

Time: 3 Hours

Max. Marks: 60

SECTION - A

 $(2 \times 12 = 24)$

Answer both questions (either a or b):

- a) What is first Brillouin zone? Discuss the construction of reciprocal lattices to SC, BCC and FCC lattices with appropriate discussions on the first Brillouin zone.
 - b) What is a phonon? Derive an expression for phonon dispersion relation in a diatomic linear lattice and discuss its optical and acoustic modes.
- 2. a) Discuss the energy levels of a free electron gas in three dimensions and derive an expression for the density of states.
 - b) What is Meissner effect? Derive the London equations and explain its significance.

SECTION - B

 $(4 \times 9 = 36)$

Answer any four (1 mark for Part a, 3 marks for Part b, 5 marks for Part c):

- 3. a) What is Fermi energy?
 - b) Discuss the effect of temperature on the Fermi-Dirac distribution function.
 - c) The Fermi energy of copper is 7 eV. Calculate the heat capacity of electron gas at room temperature in copper assuming one free electron per atom. Compare this with the lattice specific heat value of 2.4×10^4 Jkmol⁻¹K⁻¹.

P.T.O.

K22P 1423

The second secon

- 4. a) What is band gap?
 - b) Write a note on the thermal ionization of donors and acceptors.
 - In an intrinsic semiconductor, the effective mass of the electron is 0.07 m_a and that of hole 0.4 m_e. If the energy gap is 0.7 eV, determine the intrinsic concentration of charge carriers at 300 K.
- 5. a) What is a Type-I superconductor?
 - b) Explain the BCS theory of superconductivity.
 - c) Consider a Type II superconductor being placed in a small magnetic field. The field is slowly increased till the field starts penetrating the superconductor. The strength of the field at this point is $2 \times \frac{10^5}{2}$ gauss. If the fluxoid or flux quantum is approximately equal to 2×10^{-5} gauss – cm². Find the penetrating depth of this superconductor.
- 6. a) What is isotope effect in superconductivity?
 - b) What is superconductivity? Write a short note on Dc and Ac Josephson effect.
 - The critical temperature for mercury with isotope mass 202 is 4.159 K. Determine its critical temperature when its isotope mass is 200.7. Assume $\alpha = 0.5$.
- a) What is piezoelectricity?
 - b) Write a note on ferroelectric crystals and discuss its classification. c) The magnetic field intensity in a piece of ferric oxide is 106 A/m. If the
 - susceptibility of the material at room temperature is 1.5 × 10-3, calculate the magnetization and flux density in the material.
- 8. a) What are diamagnetic and paramagnetic materials?
 - b) Briefly explain the process of cooling by isentropic demagnetization. c) A paramagnetic material has 6.02×10^{28} atoms/m³ and its Fermi energy is
 - 11.63 eV. Determine the Pauli's paramagnetic susceptibility.