Name :

V Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - Supplementary) Examination, November 2024 (2019 and 2020 Admissions) BMH 504 : DIFFERENTIAL GEOMETRY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions from the following. Each question carries 1 mark. (4×1=4)

- Sketch the vector field X(p) = -p on R².
- Define the graph of a function f: U → R, U ⊆ Rⁿ⁺¹.
- 3. Find the regular points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 x_2^2$.
- Give an example of an n-surface in Rⁿ⁺¹.
- 5. Find the speed of the parameterized curve $\alpha(t) = (2 \sin t, 2 \cos t)$.

SECTION - B

Answer any six questions. Each question carries 2 marks. 6. Sketch the graph of the function $f(x_1, x_2) = x_1^2 - x_2^2$.

- 7. Show that graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function
- $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- Define a consistent ordered basis for the tangent space S_p.
- 9. Find $\nabla f(p)$ for $f(x_1, x_2) = 2x_1^2 + 3x_2^2$ at p = (1, -1).
- 10. Show that the gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to f-1(c) at p.

P.T.O.

K24U 3164

-2-

- 11. Show by an example that the set of all vectors tangent at a point p of a level set might be all of \mathbb{R}^{n+1}_{p} .
- 12. If X and Y are two parallel vector fields along α , show that X.Y is constant
- 13. With the usual notations, show that $\nabla_{v+w}f = \nabla_vf + \nabla_wf$. 14. Prove that $D_v(X + Y) = D_vX + D_vY$.
- SECTION C

Answer any eight questions. Each question carries 4 marks each. 15. Find the velocity and acceleration of the parametrized curve $\alpha(t) = (\cos t, \sin t,$

 $(8 \times 4 = 32)$

- 16. Prove that $x_1^2 + 3x_2^2 + x_3^2 = 1$ is an 2-surface in \mathbb{R}^3 .
- 17. Does the parameterized curve $\alpha(t) = (\cos t, \sin t, t)$ is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 . Justify your answer. 18. Compute $\nabla_{\mathbf{v}} f$ where $f(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^3 + \mathbf{x}_2^3 - 3\mathbf{x}_1\mathbf{x}_2^2$, $\mathbf{v} = (-1, 1, -1, -1)$.
- 19. Let S be an n-surface in R^{n+1} and let, $\alpha:I\to S$ be a parametrized curve and
- let X be a vector field tangent to S along α . Prove that (fX)' = f'X + fX'. 20. Find the integral curve through (-1, 1) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, -x_1).$
- 21. Prove that an n-sphere is connected.
- 22. Sketch the cylinder over the graph of $f(x) = \sin 2x$.
- 23. State and prove Lagrange Multiplier Theorem.
- 24. Show that the two orientations on the n-sphere $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ given by
- 25. Sketch the surface of revolution obtained by rotating the curve $x_2 = x_1$, $0 < x_1 < 1$
- 26. Compute the Weingarten map for the cylinder $x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 .

Answer any two questions. Each question carries 6 marks each.

-3-

SECTION - D

27. Let $S \subset \mathbb{R}^{n+1}$ b a connected n surface in \mathbb{R}^{n+1} . Prove that there exist on S exactly

 $(2 \times 6 = 12)$

K24U 3164

- 28. Sketch the level curves (c = -2, 0, 2) and graph of the function $f(x_1, x_2) = x_1^2 - x_2^2$. 29. Show that the set S of all unit vectors at all points of R2 forms a 3-surface in R4.
- 30. With the usual notations, prove that the parallel transport $P_\alpha:S_p\to S_q$ along α is a vector space isomorphism which preserves dot product.

two orientations N_1 and N_2 , $N_2(p) = -N_1(p)$ for all p in S.