K24U 0234

30.79	
Name :	*

Sixth Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. -Supplementary/Improvement/One Time Mercy Chance) Examination, April 2024 (2016 to 2020 Admissions) Core Coure BHM604A: DISCRETE FOURIER ANALYSIS

Time: 3 Hours

Max. Marks: 60

(Answer any 4 questions out of 5 questions. Each question carries 1 mark.) (4x1=4)

1. Define translation invariant linear transformation on $I^2(\mathbb{Z}_N)$.

SECTION - A

- 2. Describe first-stage wavelet basis for $I^2(\mathbb{Z}_N)$. Define upsampling operator.
- 4. When we say that a linear transformation from $I^2(\mathbb{Z})$ to $I^2(\mathbb{Z})$ is translation
- Define a first-stage wavelet system for I²(Z). SECTION - B
- (Answer any 6 questions out of 9 questions. Each question carries 2 marks.) (6×2=12)

For any w ∈ l²(Z_N), then prove that w * δ = w.

7. Let z = (1, 1, 0, 2) and w = (i, 0, 1, i) be vectors in $J^2(\mathbb{Z}_4)$, then find the vector $z \star w$. 8. Suppose $z, w \in I^2(\mathbb{Z}_N)$, then prove for any $k \in \mathbb{Z}$, that

- $z \star \tilde{w}(k) = \langle z, R_k w \rangle$ and
- $z * w (k) = \langle z, R_k \tilde{w} \rangle$.

P.T.O.

is an orthonormal basis for $I^2(\mathbb{Z}_N)$ if and only if the system matrix A(n) of u and v is unitary for each n = 0, 1, ..., M - 1.

K24U 0234

10. Suppose N is divisible by 2^p . Suppose u, $v \in l^2(\mathbb{Z}_N)$ are such that the system matrix A(n) is unitary for all n. Let $u_1 = u$ and $v_1 = v$, and, for all l = 2, 3, ..., p, define u_l by equation $u_i(n) = \sum_{k=0}^{2^{i-1}-1} u_1(n+kN/2^{i-1})$ and v_i similarly with v_1 in place of u_1 , then $u_1, v_1, u_2, v_2, \dots, u_p, v_p$ is p^{th} -stage wavelet filter sequence. 11. Prove that $L^2([-\pi, \pi))$ is vector space.

 $9. \ \, \text{Suppose M} \in \mathbb{N} \, \text{ and N} = 2M. \, \text{Let u, } v \in \mathit{I}^{2}(\mathbb{Z}_{N}) \, , \, \text{then B} = \left\{R_{2K}v\right\}_{k=0}^{M-1} U\left\{R_{2K}u\right\}_{k=0}^{M-1} \left\{R_{2K}u\right\}_{k=0}^{M-1} \left\{R_{2K}u\right\}_{k=0}^{M-1}$

- 12. Prove that trignometric system is complete in L^2 ([$-\pi$, π)). 13. Suppose $M \in \mathbb{N}$ and N = 2M. Suppose $u \in I^1(\mathbb{Z})$, then prove that $\hat{u}_{(N)}(m) = \hat{u}(-2\pi m / N)$ 14. Suppose $w \in l^1(\mathbb{Z})$, then prove that $(w \star \tilde{w}) + (w \star \tilde{w})^* = 2\delta$.
- (Answer any 8 questions out of 12 questions. Each question carries 4 marks). (8×4=32) 15. Define E_0 , E_1 , ..., $E_{N-1} \in l^2(\mathbb{Z}_N)$ by $E_m(n) = \frac{1}{\sqrt{N}} e^{2\pi l m n/N}$ for $0 \le m, n \le N-1$, then

the set $\{E_0, E_1, \ldots, E_{N-1}\}$ is an orthonormal basis for $J^2(\mathbb{Z}_N)$.

16. Suppose $z, w \in l^2(\mathbb{Z}_N)$, then prove that for each $m, (z*w)^n(m) = \hat{z}(m)\hat{w}(m)$.

SECTION - C

17. Define $T: I^2(\mathbb{Z}_4) \to I^2(\mathbb{Z}_4)$ by T(z)(n) = z(n) + 2z(n+1) + z(n+3). Find the eigenvalues and eigenvectors of T, and diagonalize the matrix

- A representing T in the standard basis, if possible. 18. Suppose $M \in \mathbb{N}$, N = 2M, and $u \in I^2(\mathbb{Z}_N)$ is such that $\left\{R_{2k}u\right\}_{k=0}^{M-1}$ is an orthonormal set with M elements. Define $v \in l^2(\mathbb{Z}_N)$ by $v(k) = (-1)^{k-1} \overline{u(1-k)}$ for all k, then prove that $\left\{\mathsf{R}_{2k}\mathsf{v}\right\}_{k=0}^{\mathsf{M}-1} \cup \left\{\mathsf{R}_{2k}\mathsf{u}\right\}_{k=0}^{\mathsf{M}-1}$ is a first-stage wavelet basis for $I^2(\mathbb{Z}_N)$.

-3-

19. Suppose N is even, say N = 2M, $z \in I^2(\mathbb{Z}_N)$ and x, y, $w \in I^2(\mathbb{Z}_{N/2})$, then prove that

22. Suppose T : L^2([- π , π)) \to L^2([- π , π)) is a bounded, translation-invariant linear transformation. Then prove that, for each $m \in \mathbb{Z}$, there exists $\lambda_m \in \mathbb{C}$ such that

23. Suppose $T: I^2(\mathbb{Z}) \to I^2(\mathbb{Z})$ is a bounded, translation-invariant linear transformation. Define $b \in I^2(\mathbb{Z})$ by $b = T(\delta)$. Then prove that for all $z \in I^2(\mathbb{Z})$, T(z) = b * z.

D(z) * w = D(z * U(w)) and U(x) * U(y) = U(x * y).

complete orthonormal system in $I^2(\mathbb{Z})$.

20. Suppose N is divisible by 2, and $u_1 \in I^2(\mathbb{Z}_N)$. Define $u_2 \in I^2(\mathbb{Z}_{N/2})$ by

 $u_2(n) = u_1(n) + u_1(n + N/2)$, then for all m $\hat{u}_2(m) = \hat{u}_1(2m)$.

24. Suppose $u \in I^1(\mathbb{Z})$ and $\{R_{2k}u\}_{k \in \mathbb{Z}}$ is orthonormal in $I^2(\mathbb{Z})$. Define a sequence $v \in I^1(\mathbb{Z}) \quad \text{by} \ \ v(k) = (-1)^{k-1} \overline{u(1-k)} \,. \ \ \text{Then prove that} \ \ \left\{ R_{2k} v \right\}_{k \in \mathbb{Z}} \, \cup \, \left\{ R_{2k} u \right\}_{k \in \mathbb{Z}} \, \text{is a}$

21. Prove that $f^2(\mathbb{Z})$ is complete.

 $T(e^{im\theta}) = \lambda_m e^{im\theta}$.

25. Suppose $M \in \mathbb{N}$ and N = 2M. Suppose $u, v \in l^1(\mathbb{Z})$ are such that $\{R_{2k}v\}_{k\in\mathbb{Z}}\cup\{R_{2k}u\}_{k\in\mathbb{Z}}$ is a first-stage wavelet system for $I^2(\mathbb{Z})$. Define $u_{(N)},v_{(N)}\in I^2(\mathbb{Z}_N)$ by $u_{(N)}(n) = \sum_{k \in \mathbb{Z}} u(n + kN)$ and $v_{(N)}(n) = \sum_{k \in \mathbb{Z}} v(n + kN)$. Then prove that

26. Let $p \in \mathbb{N}$, for $l=1,2,\ldots$, p, suppose that $u_1,v_1 \in l^1(\mathbb{Z})$, and the system matrix $A_l(\theta)$

defined as $A_i(\theta) = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{u}_i(\theta) & \hat{v}_i(\theta) \\ \hat{u}_i(\theta + \pi) & \hat{v}_i(\theta + \pi) \end{bmatrix}$ is unitary for all $\theta \in [0, \pi)$. Define

 $\left\{\mathsf{R}_{2k}\mathsf{v}_{(\mathsf{N})}\right\}_{k=0}^{M-1} \cup \left\{\mathsf{R}_{2k}\mathsf{u}_{(\mathsf{N})}\right\}_{k=0}^{M-1}$ is a first-stage wavelet basis for $I^2(\mathbb{Z}_{\mathsf{N}})$.

 $f_1 = v_1$, $g_1 = u_1$, and, inductively, for l = 2, 3, ..., p, define f_l and g_l by

- $f_{j} = g_{j-1} * U^{j-1}(v_{j}), g_{j} = g_{j-1} * U^{j-1}(u_{j}).$ Define $\mathsf{B} = \left\{\mathsf{R}_{2^l \mathsf{k}} \mathsf{f}_l : \mathsf{k} \in \mathbb{Z}, \mathit{l} = 1, 2, \ldots, \mathsf{p}\right\} \bigcup \left\{\mathsf{R}_{2\mathsf{pkg}_p} : \mathsf{k} \in \mathbb{Z}\right\}, \text{ then prove that B is a}$ complete orthonormal set for $I^2(\mathbb{Z})$.

K24U 0234

 $(2 \times 6 = 12)$

K24U 0234

c) $\hat{u}(n)\overline{\hat{v}(n)} + \hat{u}(n+M)\overline{\hat{v}(n+M)} = 0$ for all $n = 0, 1, \dots, M-1$.

 $B = \{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1} \text{ is an orthonormal basis for } I^2(\mathbb{Z}_N) \text{ if and only}$ if the system matrix A(n) of u and v is unitary for each n = 0, 1,...,M-1.

Equivalently, B is a first-stage wavelet basis for $I^{2}(\mathbb{Z}_{N})$ if and only if

-4-

SECTION - D

(Answer any 2 questions out of 4 questions. Each question carries 6 marks.)

28. Prove that : Suppose $M \in \mathbb{N}$ and N = 2M. Let u, $v \in I^2(\mathbb{Z}_N)$, then

27. Suppose $z \in l^2(\mathbb{Z}_N)$ and $k \in \mathbb{Z}$, then prove that for any

 $m\in Z,\, (R_kz)^{\wedge}(m)=e^{-2\pi imk/N}\,\,\hat{z}(m)\cdot$

a) $|\hat{u}(n)|^2 + |\hat{u}(n+M)|^2 = 2$

b) $|\hat{\mathbf{v}}(\mathbf{n})|^2 + |\hat{\mathbf{v}}(\mathbf{n} + \mathbf{M})|^2 = 2$

 $||z * w|| \le ||w|| 1 ||z||$

30. Suppose l is a positive integer, $g_{l-1} \in l^2(\mathbb{Z})$, and $\{R_2^{l-1} kgl-1\}_{k \in \mathbb{Z}}$ is orthonormal in $I^2(\mathbb{Z})$. Suppose also that $u, v \in I^1(\mathbb{Z})$ and the system matrix $A(\theta)$ of u and v is unitary for all θ . Define $f_l = g_{l-1} * U^{l-1}(v)$ and $g_l = g_{l-1} * U^{l-1}(u)$, then

29. Suppose $z \in l^2(\mathbb{Z})$ and $w \in l^1(\mathbb{Z})$, then prove that $z * w \in l^2(\mathbb{Z})$ and

 $\left\{ \mathsf{R}_{2'k} \mathsf{f}_{l} \right\}_{k \in \mathbb{Z}} \cup \left\{ \mathsf{R}_{2'k} \mathsf{g}_{l} \right\}_{k \in \mathbb{Z}}$ is orthonormal