Reg. No. :	
Name :	•

Sixth Semester B.Sc. Honours in Mathematics Degree (CBCSS - OBE -Regular) Examination, April 2024 (2021 Admissions) Core Course

6B26 BMH: MEASURE THEORY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of the five questions. Each question carries $(4 \times 1 = 4)$ 1 mark.

- 1. Find lim inf x_n , where $(x_n) = \left(\frac{-1}{n}\right)$.
- 2. Give an example of a σ -algebra on \mathbb{R} , the set of real numbers.
- 3. Define the counting measure on N, the set of natural numbers. Define the integral of a simple function in M⁺(X, X).
- 5. If f is an X-measurable real-valued function and if f(x) = 0 for μ -almost everywhere,
- then find ∫fdu. SECTION - B

Answer any six questions out of the nine questions. Each question carries $(6 \times 2 = 12)$ 2 marks. 6. Prove that the characteristic function χ_{E} is measurable.

- 7. Let B be the Borel Algebra on R, the set of real numbers. Show that any
- continuous function $f: \mathbb{R} \to \mathbb{R}$ is **B**-measurable. Let μ be a measure on a σ-algebra X and A be a fixed set in X. Show that the
- function λ defined for $E \in X$ by $\lambda(E) = \mu(A \cap E)$ is a measure on X.

P.T.O.

K24U 0226

-2-

 $(8 \times 4 = 32)$

- 9. Let μ be a measure on a $\sigma\text{-algebra }\textbf{X}.$ If $E,\,F\in\,\textbf{X}$ with $E\subset F,$ then prove that 10. By using properties of outer measure, show that the interval [0, 1] is not
- 11. Prove that the translate of a Lebesgue measurable set is Lebesgue measurable.
- 12. Is the empty set Lebesgue measurable ? Justify your answer.
- 13. If $f \in L(X, \mathbf{X}, \mu)$ and g is an **X**-measurable real-valued function with f(x) = g(x)almost everywhere on X, then prove that $g \in L(X, \mathbf{X}, \mu)$ and $\int f d\mu = \int g d\mu$.
- 14. If $f\in L(X,\, \textbf{X},\, \mu)$ and $\lambda: \textbf{X}\to \mathbb{R}$ is defined by $\lambda(E)=\int_E f d\mu$, then prove that λ is
- SECTION C Answer any eight questions out of the twelve questions. Each question carries

15. Prove that an extended real-valued function f is measurable if and only if the sets $A = \{x \in X : f(x) = +\infty\}$, $B = \{x \in X : f(x) = -\infty\}$ belong to **X** and the real

valued function f_1 defined by $f_1(x) = \begin{cases} f(x), & \text{if } x \notin A \cup B \\ 0, & \text{if } x \in A \cup B \end{cases}$ is measurable. 16. If f is a non-negative function in $M(X, \mathbf{X})$, then prove that there exist a sequence $(\varphi_n) \text{ in } M(X, \textbf{ X}) \text{ such that, } 0 \leq \varphi_n(x) \leq \varphi_{n+1}(x), \text{ } f(x) = \text{lim } \varphi_n(x) \text{ for } x \in X, \text{ } n \in \mathbb{N}$ and each ϕ_n has only a finite number of real values. 17. Let (f_n) be a sequence in $M(X, \mathbf{X})$. Consider the functions $f(x) = \inf f_n(x)$ and

- $f^*(x) = \lim \inf f_n(x)$. Prove that f and f^* belong to M(X, X). 18. Let μ be a measure defined on a $\sigma\text{-algebra}\,\textbf{X}.$ If (E_n) is an increasing sequence in \boldsymbol{X} , then prove that μ
- 19. Prove that outer measure is countably subadditive. 20. Prove that the union of a countable collection of measurable sets is measurable.

21. State and prove Fatou's Lemma.

24. State and prove the property of absolute integrability of the Lebesgue Integral.

 $\int f d\mu = 0.$

-3-

22. Let f belong to M^+ . Prove that f(x) = 0 μ -almost everywhere on X if and only if

23. Let ϕ be a simple function in M⁺ (X, \boldsymbol{X}) and λ be defined for E \in \boldsymbol{X} by

 $\lambda(E) = \int \phi \chi_E \, d\mu$. Prove that λ is a measure on \boldsymbol{X} .

Further prove that $|\int d\mu| \leq |\int d\mu|$.

K24U 0226

- 25. For two functions f and g in L, prove that f + g belongs to L and $\int (f + g) d\mu = \int f d\mu + \int g d\mu.$
- SECTION D

Answer any two questions out of the four questions. Each question carries

26. Prove that a measurable function f belongs to L if and only if |f| belongs to L.

6 marks. 27. Let f, g be measurable real-valued functions and let c be a real number. Then prove that the functions cf, f2, f + g and fg are also measurable.

 $(2 \times 6 = 12)$

- 28. a) Prove that any set of outer measure zero is measurable. b) Let A be any set and $\{E_k\}_{k=1}^n$ a finite disjoint collection of measurable sets.
- State and prove Lebesgue Dominated Convergence Theorem.

29. State and prove the Monotone Convergence Theorem.