Reg. No.: Name :

> Sixth Semester B.Sc. Honours in Mathematics Degree (CBCSS - Improvement/Supplementary/One Time Mercy Chance) Examination, April 2024 (2016 to 2020 Admissions)

Core Course BHM 602 : TOPOLOGY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of the five questions. Each question carries 1 mark. $(4 \times 1 = 4)$ Give an example of a non-hereditary property.

- 2. Give an example of a nearness relation.

how it forms a base for the topology.

- 3. When is a subset of a space said to be Lindeloff? 4. What is a Lebesgue number?
- 5. Give an example of a Hausdorff space which is not metrisable.
- SECTION B

Answer any six questions out of the nine questions. Each question carries

2 marks. 1. Give an example of a base for discrete topology in a set X. Further, explain

- 2. Let (X, d) be a metric space. Given two distinct points x, y ∈ X, show that there exist disjoint open sets U, V such that $x \in U$ and $y \in V$.
- Let (X, τ) be a second countable space and Y ⊂ X. Prove that any cover of Y by members of τ has a countable subcover.

P.T.O.

Is the identity function always continuous? Justify your answer.

K24U 0232

 $(8 \times 4 = 32)$

- 5. Prove that for a function $f:X\to Y$ continuous at x_0 the inverse image of every neighbourhood of $f(x_0)$ in Y is a neighbourhood of x_0 in X.
- 6. Show that $\mathbb Q$ the set of rational numbers is disconnected in $\mathbb R$ with usual topology.
- 7. Let X_1 , X_2 be connected topological spaces. Prove that $X = X_1 \times X_2$, with the product topology, is connected.
- 8. Prove that regularity is a hereditary property. State Urysohn's Lemma.
- SECTION C
- Answer any eight questions out of the twelve questions. Each question carries

set is countable.

and attains its extrema.

4 marks.

1. Define cofinite topology on a set X. Show that it is a topology on X.

2. Let X be a set and \mathcal{B} a family of subsets covering X. If for any B_1 , $B_2 \in \mathcal{B}$ and $x\in B_1\cap B_2 \text{ there exists } B_3\in \mathcal{B} \text{ such that } x\in B_3\subset B_1\cap B_2, \text{ then prove that } \mathcal{B}$ is a base for some topology on X.

4. Prove that $\overline{A} = A \cup A'$. 5. Let (X, τ) , (Y, u) be spaces and $f: X \to Y$ be function. Prove that f is continuous

3. Prove that a discrete space is second countable if and only if the underlying

if and only if for every $V \in u$ we have $f^{-1}(V) \in \tau$. 6. Prove that $\overline{A} = \{y \in X : \text{every neighbourhood of y meets A non-vacuously}\}.$

7. Prove that every continuous real valued function on a compact space is bounded

- 8. Prove that every separable space satisfies the countable chain condition.
- 9. Define mutually separated sets. Let c be a collection of connected subsets of X no two of which are mutually separated. Prove that \(\bigcup C \) is connected.

12. Give an example, with proper justification, of a space which is Hausdorff but not regular.

of A.

SECTION - D

11. Define an accumulation point. If y is an accumulation point of a subset A of a T₁ space X, prove that every neighbourhood of y contains infinitely many points

-3-

10. Prove that every regular, Lindeloff space is normal.

K24U 0232

- Answer any two questions out of the four questions. Each question carries 6 marks. $(2 \times 6 = 12)$ 1. a) Define semi-open interval topology on R. Show that it is stronger than the
- usual topology on R. b) Let (X, τ) be a space. If S is a sub-base for τ prove that τ is the smallest topology on X containing S.
 - b) Let X be the topological product of the topological spaces {(X_i, τ_i): i = 1, 2, ..., n}. If Z is any space, then prove that $f: Z \to X$ is continuous if and only if
- $\pi_i \circ f: Z \to X_i$ is continuous for all i = 1, 2, ..., n. For ℝ with usual topology, prove that a subset of ℝ is connected if and only if it is an interval.
- b) Prove that a compact subset of a Hausdorff space is closed.

2. a) Is $\overline{A} \cup \overline{B} = \overline{A \cup B}$? Justify your answer.

a) Prove that all metric spaces are T₄.