

Reg. No. :

Name :

K24U 0224

Sixth Semester B.Sc. Mathematics (Honours) Degree (C.B.C.S.S. - OBE -Regular) Examination, April 2024 (2021 Admissions) Core Course

6B24BMH: DIFFERENTIAL GEOMETRY

Time: 3 Hours

Max. Marks: 60

 Answer any 4 questions. Each question carries 1 mark. 1) Define graph of a function.

 $(4 \times 1 = 4)$

- 2) Find the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- Define geodesic.
- 4) Define covariant derivative.

Define curvature.

II. Answer any 6 questions. Each question carries 2 marks.

 $(6 \times 2 = 12)$ 1) Sketch typical level curves and the graph of the function $f(x_1, x_2) = x_1 - x_2$.

- 2) Define divergence of a vector field and find the divergence of the vector field
- $X(x_1, x_2) = \left(x_1, x_2, \frac{x_1}{2}, \frac{x_2}{2}\right).$ 3) Prove that the gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.
- 4) For what values of c is the level set f⁻¹(c) an n-surface, where f(x₁, x₂, x_{n+1})
- $= X_1^2 + ... + X_n^2 X_{n+1}^2$ 5) Show that the unit n-sphere is connected if n > 1.
- 6) Show that if $\alpha:I\to\mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.

P.T.O.

7) Prove that the value of the derivative of f with respect to v is independent of

THE REPORT OF THE PART WAS READ THE THE THE THE

K24U 0224

- 8) Compute $\nabla_v f$ where $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and $v \in \mathbb{R}^{n+1}_p$, $p \in \mathbb{R}^{n+1}$, are given by $f(x_1, x_2) = 2x_1^2 + 3x_2^2, v = (1, 0, 2, 1), (n = 1).$
- 9) Compute $\nabla_v X$ where $v \in \mathbb{R}_p^{n+1}$, $p \in \mathbb{R}^{n+1}$ and X are given by $X(x_1, x_2) =$ $(x_1, x_2, -x_2, x_1), v = (\cos\theta, \sin\theta, -\sin\theta, \cos\theta), (n = 1).$ III. Answer any 8 questions. Each question carries 4 marks.

K24U 0224

 $(2 \times 6 = 12)$

(8×4=32)

- 1) Define the following: a) Gradient of a smooth function.
 - b) Parameterized curve. c) Velocity of a parameterized curve.
 - 2) Let U be an open set in \mathbb{R}^{n+1} , let $p \in U$ and let X be a smooth vector field on U. Let $\alpha:I\to U$ be the maximal integral curve of X through p. Show that if
 - $\beta:\bar{I}\to U$ is any integral curve of X, with $\beta(t_0)=p$ for some $t_0\in\bar{I},$ then $\beta(t) = \alpha(t - t_0)$ for all $t \in \overline{I}$.
 - 3) Find the integral curve through p = (a, b) of the vector field X(p) = (p, X(p))4) Let $S=f^{-1}(c)$ be an ri-surface in \mathbb{R}^{n+1} , where $f:U\to\mathbb{R}$ is such that $\nabla f(q)\neq 0$ for all q ∈ S and let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha:I\to U$ is any integral curve of X such that
 - $\alpha(t_0) \in S$ for some $t_0 \in I$, then prove that $\alpha(t) \in S$ for all $t \in I$. 5) Show that if S is a connected n-surface in \mathbb{R}^{n+1} and $g:S\to\mathbb{R}$ is smooth and takes on only the values + 1 and -1, then g is constant. 6) Verify the following properties of the differentiation of vector fields along
 - parametrized curves: a) $\vec{X} + \vec{Y} = \vec{X} + \vec{Y}$ Where X + Y and X.Y are defined along α by (X + Y) (t) = X(t) +Y(t), (X.Y)
 - $(t) = \mathsf{X}(t).\mathsf{Y}(t), \ \forall t \in \mathsf{I}.$

then $P_{\alpha}(v) = (q, v)$. Conclude that, in an n-plane, parallel transport is path independent.

 $\alpha(t) = (\cos 3t, \sin 3t).$

 $F: \mathbb{R}^{n+1} \to \mathbb{R}$.

9) Prove that Weingarten map of the n-sphere of radius r is simply multiplication by 1/r. 10) Prove that local parametrizations of plane curves are unique up to reparametrization.

7) Find the velocity, the acceleration and the speed of the parametrized curve

8) Let S be an n-plane $a_1x_1 + ... + a_{n+1}x_{n+1} = b$ in \mathbb{R}^{n+1} , let p, q \in S and let $v=(p,\,v)\in S_p.$ Show that if α is any parametrized curve in S from p to q

- 11) Find the curvature k of the oriented plane curve $x_2 = ax_1^2 = c$, $a \neq 0$. IV. Answer any 2 questions. Each question carries 6 marks. 1) Show that the graph of any function $f:\mathbb{R}^n\to\mathbb{R}$ is a level set for some function
 - 2) State and prove the existence and uniqueness theorem for integral curves for smooth vector fields. 3) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha:I\to S$ be a parametrized curve in S, let to $t_0 \in I$ and let $v \in S_{\alpha(t_0)}$. Then prove that there exists a unique vector field V, tangent to S along α , which is parallel and has $V(t_0) = V$.
 - 4) Prove that the Weingarten map L_p is self-adjoint; that is, $L_p(v).w = v.L_p(w)$ for all $v, w \in S_p$.