K24U 3165

- 24. Write down the four properties that have to be satisfied by Green's function of a second order differential equation with homogeneous boundary conditions.
- Show that the characteristic numbers of a Fredholm equation with a real symmetric kernels are all real.
- 26. Find the resolvent Kernel of the integral equation $y(x) = 1 + \int_0^1 (1 3x\xi)y(\xi)d\xi$.

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12)

- 27. Let f and g be measurable real-valued functions and let c be any real number. Then show that the functions cf, |f| and f g are measurable.
- 28. State and prove Fatous lemma.
- 29. State and prove Lebesgue dominated convergence theorem.
- 30. Obtain the most general solution of

$$y(x) = \lambda \int_0^1 (1 - 3x\xi)y(\xi)d\xi + F(x)$$
, where $F(x) \not\equiv 0$, under the assumption $\lambda = 2, -2, \lambda \neq \pm 2$.

K24U 3165

Reg. No. :

V Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. – Supplementary) Examination, November 2024 (2019 and 2020 Admissions)

r

BHM505 A: INTEGRAL EQUATIONS AND MEASURE THEORY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of five questions. Each question carries one mark.

 $(4 \times 1 = 4)$

- 1. Evaluate $\int_0^\infty \frac{e^{-nx}}{\sqrt{x}} dx$.
- 2. Find $\lim \sup \left(1 \frac{1}{n}\right)$.
- 3. Define counting measure.
- 4. Define the kernel of integral equation.
- 5. Find the Wronskian of $u(\xi) = \xi$, $v(\xi) = \frac{1}{\xi}$.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12)

- 6. Let E = [0, 1]. Find $\chi_E(x)$.
- 7. Define step function and integral of step function.
- 8. If μ is a measure on X and A is a fixed set in X, then show that the function λ , defined by $E \in X$, by $\lambda(E) = \mu(A \cap E)$ is a measure on X.
- 9. Show that a measurable function f belongs to L if and only if |f| belongs to L.
- 10. If f is measurable, g is integrable and $|f| \le |g|$, then show that f is integrable and $\int |f| \ d\mu \le \int |g| \ d\mu$.

P.T.O.

K24U 3165

- 11. Suppose that f_i $|f| \in L$. Show that $|\int f d\mu| \le \int |f| d\mu$.
- 12. Show that constant multiple αf in L, that belongs to L, and $\int \alpha f d\mu = \alpha \int f d\mu$.
- 13. Define simple function and give an example.

14. Let
$$G(x, \xi) = \begin{cases} -\sin \xi \cos(x-1) & \text{if } 0 \le \xi \le x \\ -\sin x \cos(\xi-1) & \text{if } x \le \xi \le 1 \end{cases}$$
. Show that G is symmetric.

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

- 15. Define measurable space and measurable set.
- 16. Show that constant functions and characteristic functions are measurable.
- 17. If X is the set of real numbers, and X is the Borel algebra B, then show that any continuous function f on R to R is Borel measurable. Also show that any monotone f on R to R is Borel measurable.
- 18. Let μ be a measure defined on a σ algebra X. If (E_n) is an increasing sequence in X, then show that $\mu(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$.
- 19. Define Charge. Show that any finite linear combination of charges is charge.
- 20. Let λ denote Lebesgue measure defined on the Borel algebra **B** of R. If E is countable, then show that $E \in \mathbf{B}$ and $\lambda(E) = 0$.
- 21. Suppose that f_1 and f_2 are in L(X, **X**, μ) and λ_1 and λ_2 be their indefinite integrals. Show that λ_1 (E) = λ_2 (E), for all E \in **X** if and only if $f_1(x) = f_2(x)$ for almost all x in X.
- 22. Find the kernel of the differential equation $\frac{d^2y}{dx^2} + \lambda y = 0$, y(0) = 0, y(l) = 0, by transforming into a integral equation.
- 23. Find the Green's function of the boundary value problem $\frac{d^2y}{dx^2} + y = f(x)$, y(0) = 0, y'(1) = 0.