Reg. No. : Name :

IV Semester B.Sc. Honours in Mathematics Degree (CBCSS -Supplementary/One Time Mercy Chance) Examination, April 2024 (2016 to 2020 Admissions) BHM 403 : COMPLEX ANALYSIS, FOURIER SERIES AND PARTIAL DIFFERENTIAL EQUATIONS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4x1=4)

- Give an example of a function that is neither even nor odd.
- 2. Define accumulation point.
- Give an example of an unbounded set. 4. Define order of the PDE.
- 5. Find the fundamental period of $\cos 2\pi x$.
- SECTION B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12) 6. Find the principal value of ii.

- 7. Let $f(z) = \overline{z}$. Does f'(z) exist at any point in complex plane? Justify your answer. 8. Find the value of z for which sinh z = 0.
- 9. Show that $Log(-ei) = 1 \frac{\pi}{2}i$.
- 10. Solve for u given that $u_{vv} = 0$.

P.T.O.

K24U 0888

-2-

- 11. Write the Fourier series of an even function of period 2L.
- 12. If f(x) has a period p then prove that the period of $f(\frac{x}{b})$, $b \ne 0$ is bp. 13. Graph $f(x) = |\sin x|$ for $-\pi < x < \pi$.
- 14. If a function f(z) is continuous and non zero at a point then prove that $f(z) \neq 0$ throughout some neighbourhood of that point.
- SECTION C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8x4=32)

15. Show that $\lim_{z \to \infty} f(z) = \infty$ iff $\lim_{z \to 0} \frac{1}{f(\frac{1}{z})} = 0$.

16. If f(z) is analytic in domain D and its conjugate $\overline{f(z)}$ is analytic in D, then prove that f(z) must be a constant in D.

harmonic. Justify.

- 17. Define harmonic function and check whether the function $u(x, y) = x^2 + y^2$ is
- 18. Find the harmonic conjugate of the function u(x, y) = 2x(1 y). 19. Check whether the function f(z) = (3x + y) + i(3y - x) is entire or not.
- 20. Find the image of the vertical and horizontal segments, under the transformation $w = e^z$.
- 21. Find all the roots of the equation sinz = cosh4.
- 22. Prove the following. a) $\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = 0$ (n \neq m). Here n and m are integers. b) $\int_{-\pi}^{\pi} sinnx sinmx dx = 0 (n \neq m)$. Here n and m are integers.

c) $\int_{-\pi}^{\pi} sinnx cosmx dx = 0$ (n \neq m or n = m). Here n and m are integers.

- 23. Find the Fourier series of the function $f(x) = \begin{cases} 0 & \text{if } -2 < x < -1 \\ k & \text{if } -1 < x < 1 \text{ , } p = 2L = 4 \text{ .} \\ 0 & \text{if } 1 < x < 2 \end{cases}$

24. Solve the PDE $u_{xy} = -u_x$.

26. Solve the system of PDEs $u_{xx} = 0$, $u_{yy} = 0$. SECTION - D

25. Find a two dimensional Poisson equation whose solution is $u = \frac{1}{\sqrt{x^2 + y^2}}$.

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

K24U 0888

- 27. Explain different steps involved in solving one dimensional wave equation $u_{tt} = c^2 u_{xx}$, $c^2 = \frac{T}{c}$ along with the boundary conditions u(0, t) = 0 and u(L, t) = 0, $\forall t \ge 0$ and initial conditions u(x, 0) = f(x), $u_t(x, 0) = g(x)$ $(0 \le x \le L)$. 28. Find the type and transform into normal form and solve $u_{xx} - 2u_{xy} + u_{yy} = 0$.
- 29. Suppose that f(z) = u(x, y) + iv(x, y) and that f'(z) exists at a point $z_0 = x_0 + iy_0$. Then prove that the first order derivatives of u and v exist at (x₀, y₀) and they satisfy the Cauchy Riemann equations and $f'(z) = u_x + iv_x$.
- 30. Suppose that f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$ then prove that $\lim_{z \to z_0} f(z) = w_0$ iff $\lim_{(x,y) \to (x_0, y_0)} u(x, y) = u_0$ and $\lim_{(x,y) \to (x_0, y_0)} v(x, y) = v_0$.