

K24U 0882

Reg. No. :

Name :

IV Semester B.Sc. Honours in Mathematics Degree (CBCSS – OBE-Regular/Supplementary/Improvement) Examination, April 2024 (2021 and 2022 Admissions)

4B15 BMH: INTRODUCTION TO ABSTRACT ALGEBRA AND LINEAR **ALGEBRA**

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4) Define binary operation.

- Give an example of a finite group that is not cyclic. Order of A_n is
- Write the standard basis of Rⁿ.
- Define inverse of a linear transformation.
- SECTION B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12)

8. Define subgroup of a group. Is the set \mathbb{Z}^+ , a subgroup of the group of complex

Prove that every cyclic group is abelian.

- Prove that in a group the identity element is unique.
- 9. Let $\sigma, \tau \in S_5$, if $\sigma = (1, 4, 3, 5)$ and $\tau = (1, 3, 4, 2, 5)$ find $\sigma \tau$.

10. Find the number of elements in the set $\{\sigma \in S_4 | \sigma(3) = 3\}$.

numbers under addition? Justify your answer.

11. Express the vector $w = (2, -5)^T$ in R^2 as a linear combination of the vectors $v_1 = (1, 2)^T$ and $v_2 = (1, -1)^T$.

P.T.O.

12. Define linear span.

K24U 0882

13. If S, T : $V \rightarrow V$ are linear transformations, then prove that the composition

- ST : $V \rightarrow V$ is a linear transformation.
- 14. What is the matrix of the linear transformation which is a reflection in the line y = x?
- SECTION C Answer any 8 questions out of 12 questions. Each question carries 4 marks.

15. Check whether the set of all invertible $n \times n$ matrices under matrix multiplication

is a group. 16. If H and K are subgroups of G, then prove that H ∩ K is a subgroup of G.

- 17. Find all non-trivial subgroups of \mathbb{Z}_{12} . 18. Prove that every group is isomorphic to a group of permutations.
- 19. Let σ be a permutation of set A, for a, b \in A, let a \sim b if and only if b = $\sigma^n(a)$ for some $n \in \mathbb{Z}$. Prove that ~ is an equivalence relation.
- 21. Find the basis of the null space of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix}$.
- 23. Find the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 1 & 3 & 0 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 3 & 2 & 0 & 1 \end{pmatrix}$.

22. For any m \times n matrix A, prove that R(A) is a subspace of \mathbb{R}^m .

24. Let V be a finite-dimensional vector space and let T be a linear transformation from V to a vector space W. Then prove that T is completely determined by what it does to a basis of V.

20. Describe the group S₃ by its group table.

anticlockwise. What are the coordinates of a vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ with respect to this new basis, $B = \{v_1, v_2\}$?

by $S\begin{pmatrix} x \\ y \end{pmatrix} = (x + y, x, x - y, y)^T$.

K24U 0882

SECTION - D Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12) 27. Let G be a cyclic group with n elements and generated by a. Let b ∈ G and

let b = a^s . Then prove that b generates a cyclic subgroup H of G containing $\frac{n}{d}$

-3-

25. Find the null space and range of the linear transformation $S:\mathbb{R}^2 \to \mathbb{R}^4$ given

26. Suppose we change standard basis in \mathbb{R}^2 by a rotation of the axes $\frac{\pi}{4}$ radians

elements, where d is the greatest common divisor of n and s. 28. If $n \ge 2$, prove that the collection of all even permutations of $\{1, 2,, n\}$ forms a subgroup of the symmetric group Sn. 29. a) Define basis of a vector space. b) Let V be a vector space with a basis $B = \{v_1, v_2, ... v_n\}$ of n vectors. Then prove that any set of (n + 1) vectors are linearly dependent.

30. Verify rank-nullity theorem for the linear transformation T : $\mathbb{R}^3 \to \mathbb{R}^3$ defined by

 $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ y+z \\ z \end{pmatrix}$ and find the inverse of this linear transformation.