Reg. No.:

IV Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. – Supplementary/One Time Mercy Chance) Examination, April 2024 (2016 to 2020 Admissions)

BHM 402: ADVANCED ABSTRACT ALGEBRA

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. Define normal subgroup of a group G.
- 2. Let o be a homomorphism from a group G into a group G'. If e is the identity element in G then prove that $\phi(e)$ is the identity element in G'.
- True or false: The alternating group A_x is simple.
- Check whether 25x⁵ − 9x⁴ − 3x² − 12 is irreducible over Q.
- Find the units in Z₁₄.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- Prove that every group of prime order is cyclic.
- 7. Prove that a group homomorphism $\phi: G \to G'$ is a one-to-one map if and only if Ker $(\phi) = \{e\}$.
- Prove that every subgroup of an abelian group is normal.
- 9. Let n be a positive integer. Compute $\frac{\mathbb{R}}{-}$

P.T.O.

10. Describe all ring homomorphisms of \mathbb{Z} into \mathbb{Z} .

K24U 0887

- 11. Let R be a ring with additive identity 0. Then for $a \in R$, prove that 0a = a0 = 0. 12. Is the matrix ring $M_2(\mathbb{Z}_2)$ is an integral domain? Justify.
- 13. Prove that $a \in F$ is a zero of $f(x) \in F[x]$ if and only if x a is a factor of f(x) in F[x].
- 14. Let $f(x) = x^4 3x^3 + 2x^2 + 4x 1$ and $g(x) = x^2 2x + 3$ in $\mathbb{Z}_5[x]$. Using division
- algorithm, find q(x) and r(x) so that f(x) = g(x)q(x) + r(x). $(6 \times 2 = 12)$ SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

Find all left cosets of the subgroup 4 \(\mathbb{Z} \) of \(\mathbb{Z} \).

16. Let S_n be the symmetric group on n letters, and let $\phi: S_n \to \mathbb{Z}_2$ be defined by

operation (aH) (bH) = (ab) H.

- $\phi(\sigma) = \begin{cases} 0, & \text{if } \sigma \text{ is an even permutation} \\ 1, & \text{if } \sigma \text{ is an odd permutation} \end{cases}. \text{ Show that } \phi \text{ is a homomorphism.}$ 17. Compute the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (2,3) \rangle$. 18. Let H be a normal subgroup of G. Prove that G/H is a group under the binary
- 19. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.

subgroup of G then prove that G/N is abelian if and only if $C \le N$.

21. Prove that in the ring \mathbb{Z}_n the divisors of 0 are precisely those non-zero elements that are not relatively prime to n.

Let G be a group and C be the commutator subgroup of G. If N is a normal

- 22. State and prove Little Theorem of Fermat. 23. Find all solutions of the congruence $15x \equiv 27 \pmod{18}$.
- 24. Factorize the polynomial $x^4 + 4$ into linear factors in $\mathbb{Z}_5[x]$.
- 25. Show that $f(x) = x^4 2x^2 + 8x + 1 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} .

Prove that for a field F, the factorization in F[x] is unique.

 $(8 \times 4 = 32)$

Answer any 2 questions out of 4 questions. Each question carries 6 marks. 27. Let H be a subgroup of G. Prove that the relation '~' defined by a ~ b if and only if $a^{-1}b \in H$ is an equivalence relation on G.

THE FAMILIE AND THE PART WHITE THE PART OF THE PART OF

28. Prove the falsity of the converse of the theorem of Lagrange.

SECTION - D

K24U 0887

- 29. Prove that a) Every finite integral domain is a field. b) If p is a prime, then \mathbb{Z}_p is a field.
- 30. State and prove Eisenstein's Criterion.

 $(2 \times 6 = 12)$